1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17.png}
// OUTPUTS: {ImageRegistration6Output.png}
// OUTPUTS: {ImageRegistration6DifferenceBefore.png}
// OUTPUTS: {ImageRegistration6DifferenceAfter.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{CenteredRigid2DTransform}
// for performing registration. The example code is for the most part
// identical to the one presented in Section~\ref{sec:RigidRegistrationIn2D}.
// Even though this current example is done in $2D$, the class
// \doxygen{CenteredTransformInitializer} is quite generic and could be used
// in other dimensions. The objective of the initializer class is to simplify
// the computation of the center of rotation and the translation required to
// initialize certain transforms such as the
// CenteredRigid2DTransform. The initializer accepts two images and
// a transform as inputs. The images are considered to be the fixed and
// moving images of the registration problem, while the transform is the one
// used to register the images.
//
// The CenteredRigid2DTransform supports two modes of operation. In the first
// mode, the centers of the images are computed as space coordinates using the
// image origin, size and spacing. The center of the fixed image is assigned as
// the rotational center of the transform while the vector going from the fixed
// image center to the moving image center is passed as the initial translation
// of the transform. In the second mode, the image centers are not computed
// geometrically but by using the moments of the intensity gray levels. The
// center of mass of each image is computed using the helper class
// \doxygen{ImageMomentsCalculator}. The center of mass of the fixed image is
// passed as the rotational center of the transform while the vector going from
// the fixed image center of mass to the moving image center of mass is passed
// as the initial translation of the transform. This second mode of operation
// is quite convenient when the anatomical structures of interest are not
// centered in the image. In such cases the alignment of the centers of mass
// provides a better rough initial registration than the simple use of the
// geometrical centers. The validity of the initial registration should be
// questioned when the two images are acquired in different imaging modalities.
// In those cases, the center of mass of intensities in one modality does not
// necessarily matches the center of mass of intensities in the other imaging
// modality.
//
// \index{itk::CenteredRigid2DTransform}
// \index{itk::ImageMomentsCalculator}
//
//
// Software Guide : EndLatex
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkRegularStepGradientDescentOptimizer.h"
// Software Guide : BeginLatex
//
// The following are the most relevant headers in this example.
//
// \index{itk::CenteredRigid2DTransform!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCenteredRigid2DTransform.h"
#include "itkCenteredTransformInitializer.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSubtractImageFilter.h"
//
// The following section of code implements a command observer
// that will monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [differenceBeforeRegistration] ";
std::cerr << " [differenceAfterRegistration] "<< std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// The transform type is instantiated using the code below. The only
// template parameter of this class is the representation type of the
// space coordinates.
//
// \index{itk::CenteredRigid2DTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredRigid2DTransform< double > TransformType;
// Software Guide : EndCodeSnippet
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::MeanSquaresImageToImageMetric<
FixedImageType,
MovingImageType > MetricType;
typedef itk:: LinearInterpolateImageFunction<
MovingImageType,
double > InterpolatorType;
typedef itk::ImageRegistrationMethod<
FixedImageType,
MovingImageType > RegistrationType;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// The transform object is constructed below and passed to the
// registration method.
//
// \index{itk::CenteredRigid2DTransform!New()}
// \index{itk::CenteredRigid2DTransform!Pointer}
// \index{itk::RegistrationMethod!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
registration->SetTransform( transform );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : BeginLatex
//
// The input images are taken from readers. It is not necessary to
// explicitly call \code{Update()} on the readers since the
// CenteredTransformInitializer class will do it as part of its
// initialization. The following code instantiates the initializer. This
// class is templated over the fixed and moving image type as well as the
// transform type. An initializer is then constructed by calling the
// \code{New()} method and assigning the result to a
// \doxygen{SmartPointer}.
//
// \index{itk::CenteredRigid2DTransform!Instantiation}
// \index{itk::CenteredRigid2DTransform!New()}
// \index{itk::CenteredRigid2DTransform!SmartPointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredTransformInitializer<
TransformType, FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer
= TransformInitializerType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The initializer is now connected to the transform and to the fixed and
// moving images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The use of the geometrical centers is selected by calling
// \code{GeometryOn()} while the use of center of mass is selected by
// calling \code{MomentsOn()}. Below we select the center of mass mode.
//
// \index{CenteredTransformInitializer!MomentsOn()}
// \index{CenteredTransformInitializer!GeometryOn()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializer->MomentsOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the computation of the center and translation is triggered by
// the \code{InitializeTransform()} method. The resulting values will be
// passed directly to the transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The remaining parameters of the transform are initialized as before.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transform->SetAngle( 0.0 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the parameters of the current transform are passed as the initial
// parameters to be used when the registration process starts.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetInitialTransformParameters( transform->GetParameters() );
// Software Guide : EndCodeSnippet
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizer->SetScales( optimizerScales );
optimizer->SetMaximumStepLength( 0.1 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 200 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
const double finalAngle = finalParameters[0];
const double finalRotationCenterX = finalParameters[1];
const double finalRotationCenterY = finalParameters[2];
const double finalTranslationX = finalParameters[3];
const double finalTranslationY = finalParameters[4];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
// Print out results
//
const double finalAngleInDegrees = finalAngle * 180.0 / itk::Math::pi;
std::cout << "Result = " << std::endl;
std::cout << " Angle (radians) " << finalAngle << std::endl;
std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
std::cout << " Center X = " << finalRotationCenterX << std::endl;
std::cout << " Center Y = " << finalRotationCenterY << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and shifting it $13mm$ in $X$ and $17mm$ in
// $Y$. Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration5}. The registration takes $22$
// iterations and produces:
//
// \begin{center}
// \begin{verbatim}
// [0.174475, 111.177, 131.572, 12.4566, 16.0729]
// \end{verbatim}
// \end{center}
//
// These parameters are interpreted as
//
// \begin{itemize}
// \item Angle = $0.174475$ radians
// \item Center = $( 111.177 , 131.572 )$ millimeters
// \item Translation = $( 12.4566 , 16.0729 )$ millimeters
// \end{itemize}
//
// Note that the reported translation is not the translation of $(13,17)$
// that might be expected. The reason is that the five parameters of the
// CenteredRigid2DTransform are redundant. The actual movement
// in space is described by only $3$ parameters. This means that there are
// infinite combinations of rotation center and translations that will
// represent the same actual movement in space. It is more illustrative in
// this case to take a look at the actual rotation matrix and offset
// resulting form the five parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transform->SetParameters( finalParameters );
TransformType::MatrixType matrix = transform->GetMatrix();
TransformType::OffsetType offset = transform->GetOffset();
std::cout << "Matrix = " << std::endl << matrix << std::endl;
std::cout << "Offset = " << std::endl << offset << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Which produces the following output.
//
// \begin{verbatim}
// Matrix =
// 0.984818 -0.173591
// 0.173591 0.984818
//
// Offset =
// [36.9843, -1.22896]
// \end{verbatim}
//
// This output illustrates how counter-intuitive the mix of center of
// rotation and translations can be. Figure
// \ref{fig:TranslationAndRotationCenter} will clarify this situation. The
// figure shows the original image on the left. A rotation of $10^{\circ}$
// around the center of the image is shown in the middle. The same rotation
// performed around the origin of coordinates is shown on the right. It can
// be seen here that changing the center of rotation introduces additional
// translations.
//
// Let's analyze what happens to the center of the image that we just
// registered. Under the point of view of rotating $10^{\circ}$ around the
// center and then applying a translation of $(13mm,17mm)$. The image has
// a size of $(221 \times 257)$ pixels and unit spacing. Hence its center
// has coordinates $(110.5,128.5)$. Since the rotation is done around this
// point, the center behaves as the fixed point of the transformation and
// remains unchanged. Then with the $(13mm,17mm)$ translation it is mapped
// to $(123.5,145.5)$ which becomes its final position.
//
// The matrix and offset that we obtained at the end of the registration
// indicate that this should be equivalent to a rotation of $10^{\circ}$
// around the origin, followed by a translations of $(36.98,-1.22)$. Let's
// compute this in detail. First the rotation of the image center by
// $10^{\circ}$ around the origin will move the point to
// $(86.52,147.97)$. Now, applying a translation of $(36.98,-1.22)$ maps
// this point to $(123.5,146.75)$. Which is close to the result of our
// previous computation.
//
// It is unlikely that we could have chosen such translations as the
// initial guess, since we tend to think about image in a coordinate
// system whose origin is in the center of the image.
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{TranslationAndRotationCenter}
// \itkcaption[Effect of changing the center of rotation]{Effect of changing
// the center of rotation.}
// \label{fig:TranslationAndRotationCenter}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// You may be wondering why the actual movement is represented by three
// parameters when we take the trouble of using five. In particular, why
// use a $5$-dimensional optimizer space instead of a $3$-dimensional
// one. The answer is that by using five parameters we have a much simpler
// way of initializing the transform with the rotation matrix and
// offset. Using the minimum three parameters it is not obvious how to
// determine what the initial rotation and translations should be.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17}
// \itkcaption[CenteredTransformInitializer input images]{Fixed and moving
// images provided as input to the registration method using
// CenteredTransformInitializer.}
// \label{fig:FixedMovingImageRegistration6}
// \end{figure}
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration6Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration6DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration6DifferenceAfter}
// \itkcaption[CenteredTransformInitializer output images]{Resampled moving
// image (left). Differences between fixed and moving images, before
// registration (center) and after registration (right) with the
// CenteredTransformInitializer.}
// \label{fig:ImageRegistration6Outputs}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration6Outputs} shows the output of the
// registration. The image on the right of this figure shows the differences
// between the fixed image and the resampled moving image after registration.
//
// \begin{figure}
// \center
// \includegraphics[height=0.32\textwidth]{ImageRegistration6TraceMetric}
// \includegraphics[height=0.32\textwidth]{ImageRegistration6TraceAngle}
// \includegraphics[height=0.32\textwidth]{ImageRegistration6TraceTranslations}
// \itkcaption[CenteredTransformInitializer output plots]{Plots of the Metric,
// rotation angle, center of rotation and translations during the
// registration using CenteredTransformInitializer.}
// \label{fig:ImageRegistration6Plots}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration6Plots} plots the output parameters of
// the registration process. It includes, the metric values at every
// iteration, the angle values at every iteration, and the values of the
// translation components as the registration progress. Note that this is
// the complementary translation as used in the transform, not the actual
// total translation that is used in the transform offset. We could modify
// the observer to print the total offset instead of printing the array of
// parameters. Let's call that an exercise for the reader!
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( finalTransform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( 100 );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Now compute the difference between the images
// before and after registration.
//
typedef itk::Image< float, Dimension > DifferenceImageType;
typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
DifferenceImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::RescaleIntensityImageFilter<
DifferenceImageType,
OutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resample->GetOutput() );
resample->SetDefaultPixelValue( 1 );
intensityRescaler->SetInput( difference->GetOutput() );
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
try
{
// Compute the difference image between the
// fixed and moving image after registration.
if( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
// Compute the difference image between the
// fixed and resampled moving image after registration.
TransformType::Pointer identityTransform = TransformType::New();
identityTransform->SetIdentity();
resample->SetTransform( identityTransform );
if( argc > 4 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Error while writing difference images" << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
|