1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17S12.png}
// OUTPUTS: {ImageRegistration7Output.png}
// OUTPUTS: {ImageRegistration7DifferenceBefore.png}
// OUTPUTS: {ImageRegistration7DifferenceAfter.png}
// ARGUMENTS: 1.0 1.0 0.0
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{CenteredSimilarity2DTransform}
// class for performing registration in $2D$. The of example code is for
// the most part identical to the code presented in Section
// \ref{sec:InitializingRegistrationWithMoments}. The main difference is the
// use of \doxygen{CenteredSimilarity2DTransform} here rather than the
// \doxygen{CenteredRigid2DTransform} class.
//
// A similarity transform can be seen as a composition of rotations,
// translations and uniform scaling. It preserves angles and map lines into
// lines. This transform is implemented in the toolkit as deriving from a rigid
// $2D$ transform and with a scale parameter added.
//
// When using this transform, attention should be paid to the fact that scaling
// and translations are not independent. In the same way that rotations can
// locally be seen as translations, scaling also result in local displacements.
// Scaling is performed in general with respect to the origin of coordinates.
// However, we already saw how ambiguous that could be in the case of
// rotations. For this reason, this transform also allows users to setup a
// specific center. This center is use both for rotation and scaling.
//
//
// \index{itk::CenteredSimilarity2DTransform}
//
// Software Guide : EndLatex
#include "itkImageRegistrationMethod.h"
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkCenteredTransformInitializer.h"
// Software Guide : BeginLatex
//
// In addition to the headers included in previous examples, here the
// following header must be included.
//
// \index{itk::CenteredSimilarity2DTransform!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCenteredSimilarity2DTransform.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSubtractImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkIdentityTransform.h"
// The following section of code implements a Command observer
// that will monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [differenceBeforeRegistration] ";
std::cerr << " [differenceAfterRegistration] ";
std::cerr << " [steplength] ";
std::cerr << " [initialScaling] [initialAngle] ";
std::cerr << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// The Transform class is instantiated using the code below. The only
// template parameter of this class is the representation type of the
// space coordinates.
//
// \index{itk::CenteredSimilarity2DTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredSimilarity2DTransform< double > TransformType;
// Software Guide : EndCodeSnippet
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::MeanSquaresImageToImageMetric< FixedImageType, MovingImageType >
MetricType;
typedef itk:: LinearInterpolateImageFunction< MovingImageType, double >
InterpolatorType;
typedef itk::ImageRegistrationMethod< FixedImageType, MovingImageType >
RegistrationType;
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
InterpolatorType::Pointer interpolator = InterpolatorType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
registration->SetInterpolator( interpolator );
// Software Guide : BeginLatex
//
// The transform object is constructed below and passed to the registration
// method.
//
// \index{itk::CenteredSimilarity2DTransform!New()}
// \index{itk::CenteredSimilarity2DTransform!Pointer}
// \index{itk::RegistrationMethod!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer transform = TransformType::New();
registration->SetTransform( transform );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
fixedImageReader->Update();
registration->SetFixedImageRegion(
fixedImageReader->GetOutput()->GetBufferedRegion() );
// Software Guide : BeginLatex
//
// In this example, we again use the helper class
// \doxygen{CenteredTransformInitializer} to compute a reasonable
// value for the initial center of rotation and the translation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CenteredTransformInitializer<
TransformType, FixedImageType,
MovingImageType > TransformInitializerType;
TransformInitializerType::Pointer initializer
= TransformInitializerType::New();
initializer->SetTransform( transform );
initializer->SetFixedImage( fixedImageReader->GetOutput() );
initializer->SetMovingImage( movingImageReader->GetOutput() );
initializer->MomentsOn();
initializer->InitializeTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The remaining parameters of the transform are initialized below.
//
// \index{itk::CenteredSimilarity2DTransform!SetScale()}
// \index{itk::CenteredSimilarity2DTransform!SetAngle()}
//
// Software Guide : EndLatex
double initialScale = 1.0;
if( argc > 7 )
{
initialScale = atof( argv[7] );
}
double initialAngle = 0.0;
if( argc > 8 )
{
initialAngle = atof( argv[8] );
}
// Software Guide : BeginCodeSnippet
transform->SetScale( initialScale );
transform->SetAngle( initialAngle );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now pass the parameter of the current transform as the initial
// parameters to be used when the registration process starts.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetInitialTransformParameters( transform->GetParameters() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Keeping in mind that the scale of units in scaling, rotation and
// translation are quite different, we take advantage of the scaling
// functionality provided by the optimizers. We know that the first element
// of the parameters array corresponds to the scale factor, the second
// corresponds to the angle, third and forth are the center of rotation and
// fifth and sixth are the remaining translation. We use henceforth small
// factors in the scales associated with translations and the rotation
// center.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef OptimizerType::ScalesType OptimizerScalesType;
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 100.0;
optimizerScales[0] = 10.0;
optimizerScales[1] = 1.0;
optimizerScales[2] = translationScale;
optimizerScales[3] = translationScale;
optimizerScales[4] = translationScale;
optimizerScales[5] = translationScale;
optimizer->SetScales( optimizerScales );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set also the normal parameters of the optimization method. In this
// case we are using A
// \doxygen{RegularStepGradientDescentOptimizer}. Below, we define the
// optimization parameters like initial step length, minimal step length
// and number of iterations. These last two act as stopping criteria for
// the optimization.
//
// Software Guide : EndLatex
double steplength = 1.0;
if( argc > 6 )
{
steplength = atof( argv[6] );
}
// Software Guide : BeginCodeSnippet
optimizer->SetMaximumStepLength( steplength );
optimizer->SetMinimumStepLength( 0.0001 );
optimizer->SetNumberOfIterations( 500 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
OptimizerType::ParametersType finalParameters =
registration->GetLastTransformParameters();
const double finalScale = finalParameters[0];
const double finalAngle = finalParameters[1];
const double finalRotationCenterX = finalParameters[2];
const double finalRotationCenterY = finalParameters[3];
const double finalTranslationX = finalParameters[4];
const double finalTranslationY = finalParameters[5];
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
const double bestValue = optimizer->GetValue();
// Print out results
//
const double finalAngleInDegrees = finalAngle * 180.0 / itk::Math::pi;
std::cout << std::endl;
std::cout << "Result = " << std::endl;
std::cout << " Scale = " << finalScale << std::endl;
std::cout << " Angle (radians) " << finalAngle << std::endl;
std::cout << " Angle (degrees) " << finalAngleInDegrees << std::endl;
std::cout << " Center X = " << finalRotationCenterX << std::endl;
std::cout << " Center Y = " << finalRotationCenterY << std::endl;
std::cout << " Translation X = " << finalTranslationX << std::endl;
std::cout << " Translation Y = " << finalTranslationY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over some of the images provided in
// \code{Examples/Data}, for example:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceR10X13Y17S12.png}
// \end{itemize}
//
// The second image is the result of intentionally rotating the first image
// by $10$ degrees, scaling by $1/1.2$ and then translating by $(-13,-17)$.
// Both images have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingImageRegistration7}. The registration takes $16$
// iterations and produces:
//
// \begin{center}
// \begin{verbatim}
// [0.833222, -0.174521, 111.437, 131.741, -12.8272, -12.7862]
// \end{verbatim}
// \end{center}
//
// That are interpreted as
//
// \begin{itemize}
// \item Scale factor = $0.833222$
// \item Angle = $0.174521$ radians
// \item Center = $( 111.437 , 131.741 )$ millimeters
// \item Translation = $( -12.8272 , -12.7862 )$ millimeters
// \end{itemize}
//
//
// These values approximate the misalignment intentionally introduced into
// the moving image. Since $10$ degrees is about $0.174532$ radians.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17S12}
// \itkcaption[Fixed and Moving image registered with
// CenteredSimilarity2DTransform]{Fixed and Moving image provided as input to the
// registration method using the Similarity2D transform.}
// \label{fig:FixedMovingImageRegistration7}
// \end{figure}
//
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration7Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration7DifferenceAfter}
// \itkcaption[Output of the CenteredSimilarity2DTransform registration]{Resampled
// moving image (left). Differences between fixed and
// moving images, before (center) and after (right) registration with the
// Similarity2D transform.}
// \label{fig:ImageRegistration7Outputs}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Outputs} shows the output of the
// registration. The right image shows the squared magnitude of pixel
// differences between the fixed image and the resampled moving image.
//
// \begin{figure}
// \center
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceMetric}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceAngle}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceScale}
// \includegraphics[height=0.32\textwidth]{ImageRegistration7TraceTranslations}
// \itkcaption[CenteredSimilarity2DTransform registration plots]{Plots of the Metric,
// rotation angle and translations during
// the registration using
// Similarity2D transform.}
// \label{fig:ImageRegistration7Plots}
// \end{figure}
//
// Figure \ref{fig:ImageRegistration7Plots} shows the plots of the main
// output parameters of the registration process. The metric values at every
// iteration are shown on the top. The angle values are shown in the plot at
// left while the translation components of the registration are presented
// in the plot at right.
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter< MovingImageType,
FixedImageType > ResampleFilterType;
TransformType::Pointer finalTransform = TransformType::New();
finalTransform->SetParameters( finalParameters );
finalTransform->SetFixedParameters( transform->GetFixedParameters() );
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetTransform( finalTransform );
resampler->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 100 );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter< FixedImageType, OutputImageType >
CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resampler->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
typedef itk::RescaleIntensityImageFilter<
FixedImageType,
OutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetInput( difference->GetOutput() );
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resampler->GetOutput() );
resampler->SetDefaultPixelValue( 1 );
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
// Compute the difference image between the
// fixed and resampled moving image.
if( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
typedef itk::IdentityTransform< double, Dimension > IdentityTransformType;
IdentityTransformType::Pointer identity = IdentityTransformType::New();
// Compute the difference image between the
// fixed and moving image before registration.
if( argc > 4 )
{
resampler->SetTransform( identity );
writer2->SetFileName( argv[4] );
writer2->Update();
}
return EXIT_SUCCESS;
}
|