1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates how to explore the domain of an image metric. This
// is a useful exercise to do before starting a registration process, since
// getting familiar with the characteristics of the metric is fundamental for
// the appropriate selection of the optimizer to be use for driving the
// registration process, as well as for selecting the optimizer parameters.
// This process makes possible to identify how noisy a metric may be in a given
// range of parameters, and it will also give an idea of the number of local
// minima or maxima in which an optimizer may get trapped while exploring the
// parametric space.
//
// Software Guide : EndLatex
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
// Software Guide : BeginLatex
//
// We start by including the headers of the basic components: Metric, Transform
// and Interpolator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkMeanSquaresImageToImageMetric.h"
#include "itkTranslationTransform.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv[] )
{
if( argc < 3 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " fixedImage movingImage" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the dimension and pixel type of the images to be used in the
// evaluation of the Metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 2;
typedef unsigned char PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer fixedReader = ReaderType::New();
ReaderType::Pointer movingReader = ReaderType::New();
fixedReader->SetFileName( argv[ 1 ] );
movingReader->SetFileName( argv[ 2 ] );
try
{
fixedReader->Update();
movingReader->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : BeginLatex
//
// The type of the Metric is instantiated and one is constructed. In this case
// we decided to use the same image type for both the fixed and the moving
// images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::MeanSquaresImageToImageMetric<
ImageType, ImageType > MetricType;
MetricType::Pointer metric = MetricType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also instantiate the transform and interpolator types, and create objects
// of each class.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::TranslationTransform< double, Dimension > TransformType;
TransformType::Pointer transform = TransformType::New();
typedef itk::NearestNeighborInterpolateImageFunction<
ImageType, double > InterpolatorType;
InterpolatorType::Pointer interpolator = InterpolatorType::New();
// Software Guide : EndCodeSnippet
transform->SetIdentity();
ImageType::ConstPointer fixedImage = fixedReader->GetOutput();
ImageType::ConstPointer movingImage = movingReader->GetOutput();
// Software Guide : BeginLatex
//
// The classes required by the metric are connected to it. This includes the
// fixed and moving images, the interpolator and the transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
metric->SetTransform( transform );
metric->SetInterpolator( interpolator );
metric->SetFixedImage( fixedImage );
metric->SetMovingImage( movingImage );
// Software Guide : EndCodeSnippet
metric->SetFixedImageRegion( fixedImage->GetBufferedRegion() );
try
{
metric->Initialize();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception catched !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Finally we select a region of the parametric space to explore. In this case
// we are using a translation transform in 2D, so we simply select translations
// from a negative position to a positive position, in both $x$ and $y$. For
// each one of those positions we invoke the GetValue() method of the Metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::TransformParametersType displacement( Dimension );
const int rangex = 50;
const int rangey = 50;
for( int dx = -rangex; dx <= rangex; dx++ )
{
for( int dy = -rangey; dy <= rangey; dy++ )
{
displacement[0] = dx;
displacement[1] = dy;
const double value = metric->GetValue( displacement );
std::cout << dx << " " << dy << " " << value << std::endl;
}
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.33\textwidth]{MeanSquaresMetricPlot1}
// \includegraphics[height=0.33\textwidth]{MeanSquaresMetricPlot2}
// \itkcaption[Mean Squares Metric Plots]{Plots of the Mean Squares Metric for
// an image compared to itself under multiple translations.}
// \label{fig:MeanSquaresMetricPlot}
// \end{figure}
//
// Running this code using the image BrainProtonDensitySlice.png as both the
// fixed and the moving images results in the plot shown in
// Figure~\ref{fig:MeanSquaresMetricPlot}. From this Figure, it can be seen
// that a gradient based optimizer will be appropriate for finding the extrema
// of the Metric. It is also possible to estimate a good value for the step
// length of a gradient-descent optimizer.
//
// This exercise of plotting the Metric is probably the best thing to do when a
// registration process is not converging and when it is unclear how to fine
// tune the different parameters involved in the registration. This includes
// the optimizer parameters, the metric parameters and even options such as
// preprocessing the image data with smoothing filters.
//
// The shell and Gnuplot\footnote{http://www.gnuplot.info} scripts used for
// generating the graphics in Figure~\ref{fig:MeanSquaresMetricPlot} are
// available in the directory
//
// \code{ITKSoftwareGuide/SoftwareGuide/Art}
//
// Of course, this plotting exercise becomes more challenging when the
// transform has more than three parameters, and when those parameters have
// very different range of values. In those cases is necessary to select only a
// key subset of parameters from the transform and to study the behavior of the
// metric when those parameters are varied.
//
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|