1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{SpatialObject} as a
// component of the registration framework in order to perform model based
// registration. In this case, a SpatialObject is used for generating a
// \doxygen{PointSet} whose points are located in a narrow band around the
// edges of the SpatialObject. This PointSet is then used in order to perform
// PointSet to Image registration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// In this example we use the \doxygen{BoxSpatialObject}, that is one of the
// simplest SpatialObjects in ITK.
//
// \index{itk::BoxSpatialObject!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkBoxSpatialObject.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The generation of the PointSet is done in two stages. First the
// SpatialObject is rasterized in order to generate an image containing a
// binary mask that represents the inside and outside of the SpatialObject.
// Second, this mask is used for computing a distance map, and the points
// close to the boundary of the mask are taken as elements of the final
// PointSet. The pixel values associated to the point in the PointSet are the
// values of distance from each point to the binary mask. The first stage is
// performed by the \doxygen{SpatialObjectToImageFilter}, while the second
// stage is performed witht eh \doxygen{BinaryMaskToNarrowBandPointSetFilter}
//
// \index{itk::Spatial\-Object\-To\-Image\-Filter!header}
// \index{itk::Binary\-Mask\-To\-Narrow\-Band\-Point\-Set\-Filter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkSpatialObjectToImageFilter.h"
#include "itkBinaryMaskToNarrowBandPointSetFilter.h"
// Software Guide : EndCodeSnippet
#include "itkBinaryMaskToNarrowBandPointSetFilter.h"
#include "itkPointSet.h"
#include "itkPointSetToImageRegistrationMethod.h"
#include "itkNormalizedCorrelationPointSetToImageMetric.h"
#include "itkNearestNeighborInterpolateImageFunction.h"
#include "itkRigid2DTransform.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkResampleImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
//
// Observer to the optimizer
//
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{
return;
}
OptimizerType::DerivativeType gradient = optimizer->GetGradient();
OptimizerType::ScalesType scales = optimizer->GetScales();
double magnitude2 = 0.0;
for(unsigned int i=0; i<gradient.size(); i++)
{
const double fc = gradient[i] / scales[i];
magnitude2 += fc * fc;
}
const double gradientMagnitude = std::sqrt( magnitude2 );
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << gradientMagnitude << " ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char * argv [] )
{
if( argc < 2 )
{
std::cerr << "Missing argument" << std::endl;
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0] << " movingImageFileName [initialX initialY] " << std::endl;
std::cerr << "[rasterizedObjectFileName] [BoxSizeX BoxSizeY]" << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef unsigned char MaskPixelType;
typedef itk::Image< MaskPixelType, Dimension > MaskImageType;
typedef itk::BoxSpatialObject< Dimension > SpatialObjectType;
typedef itk::SpatialObjectToImageFilter<
SpatialObjectType,
MaskImageType
> SpatialObjectToImageFilterType;
typedef itk::PointSet< float, Dimension > FixedPointSetType;
typedef itk::BinaryMaskToNarrowBandPointSetFilter<
MaskImageType,
FixedPointSetType
> NarrowBandFilterType;
typedef signed short PixelType;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef unsigned char MaskPixelType;
typedef itk::Image< MaskPixelType, Dimension > MaskImageType;
typedef itk::Rigid2DTransform< double > TransformType;
typedef TransformType::ParametersType ParametersType;
typedef itk::RegularStepGradientDescentOptimizer OptimizerType;
typedef itk::LinearInterpolateImageFunction<
ImageType,
double > LinearInterpolatorType;
typedef itk::NormalizedCorrelationPointSetToImageMetric<
FixedPointSetType,
ImageType > MetricType;
typedef OptimizerType::ScalesType OptimizerScalesType;
typedef itk::PointSetToImageRegistrationMethod<
FixedPointSetType,
ImageType > RegistrationType;
typedef CommandIterationUpdate IterationObserverType;
typedef itk::ImageFileReader< ImageType > ImageReaderType;
SpatialObjectType::Pointer spatialObject;
TransformType::Pointer transform;
OptimizerType::Pointer optimizer;
IterationObserverType::Pointer iterationObserver;
LinearInterpolatorType::Pointer linearInterpolator;
MetricType::Pointer metric;
RegistrationType::Pointer registrationMethod;
ImageReaderType::Pointer movingImageReader;
FixedPointSetType::Pointer fixedPointSet;
ImageType::ConstPointer movingImage;
SpatialObjectToImageFilterType::Pointer rasterizationFilter;
NarrowBandFilterType::Pointer narrowBandPointSetFilter;
metric = MetricType::New();
transform = TransformType::New();
optimizer = OptimizerType::New();
linearInterpolator = LinearInterpolatorType::New();
registrationMethod = RegistrationType::New();
iterationObserver = IterationObserverType::New();
spatialObject = SpatialObjectType::New();
rasterizationFilter = SpatialObjectToImageFilterType::New();
narrowBandPointSetFilter = NarrowBandFilterType::New();
movingImageReader = ImageReaderType::New();
movingImageReader->SetFileName( argv[1] );
try
{
movingImageReader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem reading Moving image from = " << std::endl;
std::cerr << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
movingImage = movingImageReader->GetOutput();
SpatialObjectType::SizeType boxSize;
boxSize[0] = 60.0; // mm
boxSize[1] = 60.0; // mm
if( argc > 6 )
{
boxSize[0] = atof( argv[5] );
boxSize[1] = atof( argv[6] );
}
//
// The geometry of the BoxSpatialObject is such that one of
// its corners is located at the origin of coordinates.
//
spatialObject->SetSize( boxSize );
ImageType::RegionType region =
movingImage->GetLargestPossibleRegion();
ImageType::SizeType imageSize = region.GetSize();
ImageType::SpacingType spacing = movingImage->GetSpacing();
ImageType::PointType origin;
origin[0] = ( boxSize[0] - imageSize[0] * spacing[0] ) / 2.0;
origin[1] = ( boxSize[1] - imageSize[1] * spacing[1] ) / 2.0;
rasterizationFilter->SetInput( spatialObject );
rasterizationFilter->SetSize( imageSize );
rasterizationFilter->SetSpacing( spacing );
rasterizationFilter->SetOrigin( origin );
narrowBandPointSetFilter->SetBandWidth( 5.0 );
narrowBandPointSetFilter->SetInput(
rasterizationFilter->GetOutput() );
narrowBandPointSetFilter->Update();
if( argc > 4 )
{
typedef itk::ImageFileWriter< MaskImageType > MaskWriterType;
MaskWriterType::Pointer maskWriter = MaskWriterType::New();
maskWriter->SetInput( rasterizationFilter->GetOutput() );
maskWriter->SetFileName( argv[4] );
maskWriter->Update();
}
fixedPointSet = narrowBandPointSetFilter->GetOutput();
fixedPointSet->Print( std::cout );
registrationMethod->SetOptimizer( optimizer );
registrationMethod->SetInterpolator( linearInterpolator );
registrationMethod->SetMetric( metric );
registrationMethod->SetTransform( transform );
registrationMethod->SetMovingImage( movingImage );
registrationMethod->SetFixedPointSet( fixedPointSet );
optimizer->SetMaximumStepLength( 1.00 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetNumberOfIterations( 300 );
optimizer->SetRelaxationFactor( 0.90 );
optimizer->SetGradientMagnitudeTolerance( 0.05 );
optimizer->MinimizeOn();
optimizer->AddObserver( itk::IterationEvent(), iterationObserver );
TransformType::TranslationType initialTranslation;
initialTranslation[0] = 0.0;
initialTranslation[1] = 0.0;
if( argc >= 4 )
{
initialTranslation[0] = atof( argv[2] );
initialTranslation[1] = atof( argv[3] );
}
TransformType::OutputPointType rotationCenter;
rotationCenter[0] = boxSize[0] / 2.0;
rotationCenter[1] = boxSize[1] / 2.0;
transform->SetIdentity();
transform->SetCenter( rotationCenter );
transform->SetTranslation( initialTranslation );
registrationMethod->SetInitialTransformParameters(
transform->GetParameters() );
OptimizerScalesType optimizerScales( transform->GetNumberOfParameters() );
const double translationScale = 1.0 / 1000.0;
optimizerScales[0] = 1.0;
optimizerScales[1] = translationScale;
optimizerScales[2] = translationScale;
optimizer->SetScales( optimizerScales );
try
{
registrationMethod->Update();
std::cout << "Optimizer stop condition: "
<< registrationMethod->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem found during the registration" << std::endl;
std::cerr << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
ParametersType transformParameters =
registrationMethod->GetLastTransformParameters();
TransformType::OutputPointType center = transform->GetCenter();
std::cout << "Registration parameter = " << std::endl;
std::cout << "Rotation center = " << center << std::endl;
std::cout << "Parameters = " << transformParameters << std::endl;
return EXIT_SUCCESS;
}
|