File: DeformableRegistration8.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (483 lines) | stat: -rw-r--r-- 15,561 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// This example illustrates the use of the \doxygen{BSplineTransform}
// class for performing registration of two $3D$ images and for the case of
// multi-modality images. The image metric of choice in this case is the
// \doxygen{MattesMutualInformationImageToImageMetricv4}.
//
// \index{itk::BSplineTransform}
// \index{itk::BSplineTransform!DeformableRegistration}
// \index{itk::LBFGSBOptimizerv4}
//
// Software Guide : EndLatex

#include "itkImageRegistrationMethodv4.h"

#include "itkTimeProbesCollectorBase.h"
#include "itkMemoryProbesCollectorBase.h"


//  Software Guide : BeginLatex
//
//  The following are the most relevant headers to this example.
//
//  \index{itk::BSplineTransform!header}
//  \index{itk::LBFGSBOptimizerv4!header}
//
//  Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkBSplineTransform.h"
#include "itkLBFGSBOptimizerv4.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
// Software Guide : EndCodeSnippet

#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkSquaredDifferenceImageFilter.h"

#include "itkTransformFileReader.h"

#include "itkBSplineTransformInitializer.h"
#include "itkTransformToDisplacementFieldFilter.h"

//  The following section of code implements a Command observer
//  used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
  typedef  CommandIterationUpdate   Self;
  typedef  itk::Command             Superclass;
  typedef itk::SmartPointer<Self>   Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdate() {};

public:
  typedef itk::LBFGSBOptimizerv4    OptimizerType;
  typedef   const OptimizerType *   OptimizerPointer;

  void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *)caller, event);
    }

  void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
    if( !(itk::IterationEvent().CheckEvent( &event )) )
      {
      return;
      }
    std::cout << optimizer->GetCurrentIteration() << "   ";
    std::cout << optimizer->GetCurrentMetricValue() << "   ";
    std::cout << optimizer->GetInfinityNormOfProjectedGradient() << std::endl;
    }
};


int main( int argc, char *argv[] )
{
  if( argc < 4 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile outputImagefile  ";
    std::cerr << " [differenceOutputfile] [differenceBeforeRegistration] ";
    std::cerr << " [deformationField] ";
    std::cerr << " [filenameForFinalTransformParameters] [numberOfGridNodesInOneDimension]";
    std::cerr << std::endl;
    return EXIT_FAILURE;
    }

  const    unsigned int    ImageDimension = 3;
  typedef  float           PixelType;

  typedef itk::Image< PixelType, ImageDimension >  FixedImageType;
  typedef itk::Image< PixelType, ImageDimension >  MovingImageType;


  //  Software Guide : BeginLatex
  //
  //  We instantiate now the type of the \code{BSplineTransform} using
  //  as template parameters the type for coordinates representation, the
  //  dimension of the space, and the order of the BSpline.
  //
  //  \index{BSplineTransform!New}
  //  \index{BSplineTransform!Instantiation}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int SpaceDimension = ImageDimension;
  const unsigned int SplineOrder = 3;
  typedef double CoordinateRepType;

  typedef itk::BSplineTransform<
                            CoordinateRepType,
                            SpaceDimension,
                            SplineOrder >     TransformType;
  // Software Guide : EndCodeSnippet


  typedef itk::LBFGSBOptimizerv4       OptimizerType;


  typedef itk::MattesMutualInformationImageToImageMetricv4<
                                    FixedImageType,
                                    MovingImageType >    MetricType;

  typedef itk::ImageRegistrationMethodv4<
                                    FixedImageType,
                                    MovingImageType >    RegistrationType;

  MetricType::Pointer         metric        = MetricType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();


  registration->SetMetric(        metric        );
  registration->SetOptimizer(     optimizer     );

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );

  FixedImageType::ConstPointer fixedImage = fixedImageReader->GetOutput();

  registration->SetFixedImage(  fixedImage   );
  registration->SetMovingImage( movingImageReader->GetOutput()   );

  fixedImageReader->Update();

  //  Software Guide : BeginLatex
  //
  //  The transform object is constructed, initialized like previous example
  //  and passed to the registration method.
  //
  //  \index{itk::ImageRegistrationMethodv4!SetInitialTransform()}
  //  \index{itk::ImageRegistrationMethodv4!InPlaceOn()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  TransformType::Pointer  transform = TransformType::New();
  // Software Guide : EndCodeSnippet

  // Initialize the transform
  unsigned int numberOfGridNodesInOneDimension = 5;

  if( argc > 8 )
    {
    numberOfGridNodesInOneDimension = atoi( argv[8] );
    }

  typedef itk::BSplineTransformInitializer< TransformType,
                                            FixedImageType>      InitializerType;

  InitializerType::Pointer transformInitializer = InitializerType::New();

  TransformType::MeshSizeType             meshSize;
  meshSize.Fill( numberOfGridNodesInOneDimension - SplineOrder );

  transformInitializer->SetTransform( transform );
  transformInitializer->SetImage( fixedImage );
  transformInitializer->SetTransformDomainMeshSize( meshSize );
  transformInitializer->InitializeTransform();

  // Set transform to identity
  transform->SetIdentity();

  // Software Guide : BeginCodeSnippet
  registration->SetInitialTransform( transform );
  registration->InPlaceOn();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Next we set the parameters of the LBFGSB Optimizer.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int numParameters = transform->GetNumberOfParameters();
  OptimizerType::BoundSelectionType boundSelect( numParameters );
  OptimizerType::BoundValueType upperBound( numParameters );
  OptimizerType::BoundValueType lowerBound( numParameters );

  boundSelect.Fill( OptimizerType::UNBOUNDED );
  upperBound.Fill( 0.0 );
  lowerBound.Fill( 0.0 );

  optimizer->SetBoundSelection( boundSelect );
  optimizer->SetUpperBound( upperBound );
  optimizer->SetLowerBound( lowerBound );

  optimizer->SetCostFunctionConvergenceFactor( 1.e7 );
  optimizer->SetGradientConvergenceTolerance( 1e-6 );
  optimizer->SetNumberOfIterations( 200 );
  optimizer->SetMaximumNumberOfFunctionEvaluations( 30 );
  optimizer->SetMaximumNumberOfCorrections( 5 );
  // Software Guide : EndCodeSnippet

  // Create the Command observer and register it with the optimizer.
  //
  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
  optimizer->AddObserver( itk::IterationEvent(), observer );

  //  A single level registration process is run using
  //  the shrink factor 1 and smoothing sigma 0.
  //
  const unsigned int numberOfLevels = 1;

  RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
  shrinkFactorsPerLevel.SetSize( numberOfLevels );
  shrinkFactorsPerLevel[0] = 1;

  RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize( numberOfLevels );
  smoothingSigmasPerLevel[0] = 0;

  registration->SetNumberOfLevels( numberOfLevels );
  registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
  registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );

  //  Software Guide : BeginLatex
  //
  //  Next we set the parameters of the Mattes Mutual Information Metric.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  metric->SetNumberOfHistogramBins( 50 );
  // Software Guide : EndCodeSnippet

  // Add time and memory probes
  itk::TimeProbesCollectorBase chronometer;
  itk::MemoryProbesCollectorBase memorymeter;

  std::cout << std::endl << "Starting Registration" << std::endl;

  try
    {
    memorymeter.Start( "Registration" );
    chronometer.Start( "Registration" );

    registration->Update();

    chronometer.Stop( "Registration" );
    memorymeter.Stop( "Registration" );

    std::cout << "Optimizer stop condition = "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  // Report the time and memory taken by the registration
  chronometer.Report( std::cout );
  memorymeter.Report( std::cout );

  OptimizerType::ParametersType finalParameters =
                                      transform->GetParameters();

  std::cout << "Last Transform Parameters" << std::endl;
  std::cout << finalParameters << std::endl;

  // Finally we use the last transform in order to resample the image.
  //
  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( transform );
  resample->SetInput( movingImageReader->GetOutput() );

  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );

  // This value is set to zero in order to make easier to perform
  // regression testing in this example. However, for didactic
  // exercise it will be better to set it to a medium gray value
  // such as 100 or 128.
  resample->SetDefaultPixelValue( 0 );

  typedef  signed short  OutputPixelType;

  typedef itk::Image< OutputPixelType, ImageDimension > OutputImageType;

  typedef itk::CastImageFilter<
                        FixedImageType,
                        OutputImageType > CastFilterType;

  typedef itk::ImageFileWriter< OutputImageType >  WriterType;


  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();


  writer->SetFileName( argv[3] );


  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );


  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  typedef itk::SquaredDifferenceImageFilter<
                                  FixedImageType,
                                  FixedImageType,
                                  OutputImageType > DifferenceFilterType;

  DifferenceFilterType::Pointer difference = DifferenceFilterType::New();

  WriterType::Pointer writer2 = WriterType::New();
  writer2->SetInput( difference->GetOutput() );


  // Compute the difference image between the
  // fixed and resampled moving image.
  if( argc > 4 )
    {
    difference->SetInput1( fixedImageReader->GetOutput() );
    difference->SetInput2( resample->GetOutput() );
    writer2->SetFileName( argv[4] );
    try
      {
      writer2->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      return EXIT_FAILURE;
      }
    }


  // Compute the difference image between the
  // fixed and moving image before registration.
  if( argc > 5 )
    {
    writer2->SetFileName( argv[5] );
    difference->SetInput1( fixedImageReader->GetOutput() );
    difference->SetInput2( movingImageReader->GetOutput() );
    try
      {
      writer2->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      return EXIT_FAILURE;
      }
    }

  // Generate the explicit deformation field resulting from
  // the registration.
  if( argc > 6 )
    {
    typedef itk::Vector< float, ImageDimension >          VectorPixelType;
    typedef itk::Image< VectorPixelType, ImageDimension > DisplacementFieldImageType;

    typedef itk::TransformToDisplacementFieldFilter<
                          DisplacementFieldImageType,
                          CoordinateRepType >             DisplacementFieldGeneratorType;

    /** Create an setup displacement field generator. */
    DisplacementFieldGeneratorType::Pointer dispfieldGenerator =
                                                    DisplacementFieldGeneratorType::New();
    dispfieldGenerator->UseReferenceImageOn();
    dispfieldGenerator->SetReferenceImage( fixedImage );
    dispfieldGenerator->SetTransform( transform );
    try
      {
      dispfieldGenerator->Update();
      }
    catch ( itk::ExceptionObject & err )
      {
      std::cerr << "Exception detected while generating deformation field";
      std::cerr << " : "  << err << std::endl;
      return EXIT_FAILURE;
      }

    typedef itk::ImageFileWriter< DisplacementFieldImageType >  FieldWriterType;
    FieldWriterType::Pointer fieldWriter = FieldWriterType::New();

    fieldWriter->SetInput( dispfieldGenerator->GetOutput() );

    fieldWriter->SetFileName( argv[6] );
    try
      {
      fieldWriter->Update();
      }
    catch( itk::ExceptionObject & excp )
      {
      std::cerr << "Exception thrown " << std::endl;
      std::cerr << excp << std::endl;
      return EXIT_FAILURE;
      }
    }

  // Optionally, save the transform parameters in a file
  if( argc > 7 )
    {
    std::ofstream parametersFile;
    parametersFile.open( argv[7] );
    parametersFile << finalParameters << std::endl;
    parametersFile.close();
    }

  return EXIT_SUCCESS;
}