1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceShifted13x17y.png}
// OUTPUTS: {ImageRegistration1Output.png}
// OUTPUTS: {ImageRegistration1DifferenceAfter.png}
// OUTPUTS: {ImageRegistration1DifferenceBefore.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the image registration framework in
// Insight. It should be read as a ``Hello World'' for ITK registration.
// Instead of means to an end, this example should be read as a basic
// introduction to the elements typically involved when solving a problem
// of image registration.
//
// \index{itk::Image!Instantiation}
// \index{itk::Image!Header}
//
// A registration method requires the following set of components: two input
// images, a transform, a metric and an optimizer. Some of these components
// are parameterized by the image type for which the registration is intended.
// The following header files provide declarations of common types used for
// these components.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethodv4.h"
#include "itkTranslationTransform.h"
#include "itkMeanSquaresImageToImageMetricv4.h"
#include "itkRegularStepGradientDescentOptimizerv4.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkSubtractImageFilter.h"
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
typedef const OptimizerType* OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( ! itk::IterationEvent().CheckEvent( &event ) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " = ";
std::cout << optimizer->GetValue() << " : ";
std::cout << optimizer->GetCurrentPosition() << std::endl;
}
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << "outputImagefile [differenceImageAfter]";
std::cerr << "[differenceImageBefore] [useEstimator]" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The type of each registration component should
// be instantiated first. We start by selecting the image
// dimension and the types to be used for representing image pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 2;
typedef float PixelType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the input images are instantiated by the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The transform that will map the fixed image space into the moving image
// space is defined below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::TranslationTransform< double, Dimension > TransformType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// An optimizer is required to explore the parameter space of the transform
// in search of optimal values of the metric.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The metric will compare how well the two images match each other. Metric
// types are usually templated over the image types as seen in
// the following type declaration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::MeanSquaresImageToImageMetricv4<
FixedImageType,
MovingImageType > MetricType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration method type is instantiated using the types of the
// fixed and moving images as well as the output transform type. This class
// is responsible for interconnecting all the components that we have described so far.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageRegistrationMethodv4<
FixedImageType,
MovingImageType,
TransformType > RegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each one of the registration components is created using its
// \code{New()} method and is assigned to its respective
// \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
MetricType::Pointer metric = MetricType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
RegistrationType::Pointer registration = RegistrationType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Each component is now connected to the instance of the registration method.
//
// \index{itk::RegistrationMethodv4!SetMetric()}
// \index{itk::RegistrationMethodv4!SetOptimizer()}
// \index{itk::RegistrationMethodv4!SetFixedImage()}
// \index{itk::RegistrationMethodv4!SetMovingImage()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetMetric( metric );
registration->SetOptimizer( optimizer );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example the transform object does not need to be created and passed to the
// registration method like above since the registration filter will instantiate an internal
// transform object using the transform type that is passed to it as a template parameter.
//
// Metric needs an interpolator to evaluate the intensities of the fixed and
// moving images at non-grid positions. The types of fixed and moving interpolators
// are declared here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LinearInterpolateImageFunction<
FixedImageType,
double > FixedLinearInterpolatorType;
typedef itk::LinearInterpolateImageFunction<
MovingImageType,
double > MovingLinearInterpolatorType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, fixed and moving interpolators are created and passed to the metric.
// Since linear interpolators are used as default, we could skip the following
// step in this example.
//
// \index{itk::MeanSquaresImageToImageMetricv4!SetFixedInterpolator()}
// \index{itk::MeanSquaresImageToImageMetricv4!SetMovingInterpolator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedLinearInterpolatorType::Pointer fixedInterpolator =
FixedLinearInterpolatorType::New();
MovingLinearInterpolatorType::Pointer movingInterpolator =
MovingLinearInterpolatorType::New();
metric->SetFixedInterpolator( fixedInterpolator );
metric->SetMovingInterpolator( movingInterpolator );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// In this example, the fixed and moving images are read from files. This
// requires the \doxygen{ImageRegistrationMethodv4} to acquire its inputs
// from the output of the readers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the registration process should be initialized. ITKv4 registration
// framework provides initial transforms for both fixed and moving images.
// These transforms can be used to setup an initial known correction of the
// misalignment between the virtual domain and fixed/moving image spaces.
// In this particular case, a translation transform is being used for
// initialization of the moving image space.
// The array of parameters for the initial moving transform is simply composed
// of the translation values along each dimension. Setting the values of the
// parameters to zero initializes the transform to an \emph{Identity} transform.
// Note that the array constructor requires the number of elements to be passed
// as an argument.
//
// \index{itk::TranslationTransform!GetNumberOfParameters()}
// \index{itk::RegistrationMethodv4!SetMovingInitialTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer movingInitialTransform = TransformType::New();
TransformType::ParametersType initialParameters(
movingInitialTransform->GetNumberOfParameters() );
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
movingInitialTransform->SetParameters( initialParameters );
registration->SetMovingInitialTransform( movingInitialTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the registration filter this moving initial transform will be added to a
// composite transform that already includes an instantiation of the output optimizable
// transform; then, the resultant composite transform will be used by the optimizer to
// evaluate the metric values at each iteration.
//
// Despite this, the fixed initial transform does not contribute to the
// optimization process. It is only used to access the fixed image from the
// virtual image space where the metric evaluation happens.
//
// Virtual images are a new concept added to the ITKv4 registration framework,
// which potentially lets us to do the registration process in a physical domain
// totally different from the fixed and moving image domains.
// In fact, the region over which metric evaluation is performed is called virtual image
// domain. This domain defines the resolution at which the evaluation is performed,
// as well as the physical coordinate system.
//
// The virtual reference domain is taken from the ``virtual image'' buffered region, and
// the input images should be accessed from this reference space using the fixed and moving
// initial transforms.
//
// The legacy intuitive registration framework can be considered as a special
// case where the virtual domain is the same as the fixed image domain. As this case
// practically happens in most of the real life applications, the virtual image is set
// to be the same as the fixed image by default. However, the user can define the virtual
// domain differently than the fixed image domain by calling either \code{SetVirtualDomain}
// or \code{SetVirtualDomainFromImage}.
//
// In this example, like the most examples of this chapter, the virtual image is considered
// the same as the fixed image. Since the registration process happens in the fixed image
// physical domain, the fixed initial transform maintains its default value of identity and
// does not need to be set.
//
// However, a ``Hello World!'' example should show all the basics, so
// all the registration components are explicity set here.
//
// In the next section of this chapter, you will get a better understanding
// from behind the scenes of the registration process when the initial fixed
// transform is not identity.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::Pointer identityTransform = TransformType::New();
identityTransform->SetIdentity();
registration->SetFixedInitialTransform( identityTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the above process shows only one way of initializing the registration
// configuration. Another option is to initialize the output optimizable transform directly.
// In this approach, a transform object is created, initialized, and then passed to
// the registration method via \code{SetInitialTransform()}. This approach is shown in
// section~\ref{sec:RigidRegistrationIn2D}.
//
// At this point the registration method is ready for execution. The
// optimizer is the component that drives the execution of the
// registration. However, the ImageRegistrationMethodv4 class
// orchestrates the ensemble to make sure that everything is in place
// before control is passed to the optimizer.
//
// It is usually desirable to fine tune the parameters of the optimizer.
// Each optimizer has particular parameters that must be interpreted in the
// context of the optimization strategy it implements. The optimizer used in
// this example is a variant of gradient descent that attempts to prevent it
// from taking steps that are too large. At each iteration, this optimizer
// will take a step along the direction of the \doxygen{ImageToImageMetricv4}
// derivative. Each time the direction of the derivative abruptly changes,
// the optimizer assumes that a local extrema has been passed and reacts by
// reducing the step length by a relaxation factor. The reducing factor
// should have a value between 0 and 1. This factor is set to 0.5 by default,
// and it can be changed to a different value via \code{SetRelaxationFactor()}.
// Also, the default value for the initial step length is 1, and this value can
// be changed manually with the method \code{SetLearningRate()}.
//
// In addition to manual settings, the initial step size can also be estimated
// automatically, either at each iteration or only at the first iteration,
// by assigning a ScalesEstimator (as will be seen in later examples).
//
// After several reductions of the step length, the optimizer may be moving
// in a very restricted area of the transform parameter space. By the method
// \code{SetMinimumStepLength()}, the user can define how small the step length
// should be to consider convergence to have been reached. This is equivalent
// to defining the precision with which the final transform should be known.
// User can also set some other stop criteria manually like maximum number of
// iterations.
//
// In other gradient descent-based optimizers of the ITKv4 framework, such as
// \doxygen{GradientDescentLineSearchOptimizerv4} and \doxygen{ConjugateGradientLineSearchOptimizerv4},
// the convergence criteria are set via \code{SetMinimumConvergenceValue()} which is computed based on
// the results of the last few iterations. The number of iterations involved in computations
// are defined by the convergence window size via \code{SetConvergenceWindowSize()} which is shown
// in later examples of this chapter.
//
// Also note that unlike the previous versions, ITKv4 optimizers do not have a ``maximize/minimize''
// option to modify the effect of the metric derivatives. Each assigned metric is assumed to
// return a parameter derivative result that "improves" the optimization.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetLearningRate()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetMinimumStepLength()}
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetRelaxationFactor()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetLearningRate( 4 );
optimizer->SetMinimumStepLength( 0.001 );
optimizer->SetRelaxationFactor( 0.5 );
// Software Guide : EndCodeSnippet
bool useEstimator = false;
if( argc > 6 )
{
useEstimator = atoi(argv[6]) != 0;
}
if( useEstimator )
{
typedef itk::RegistrationParameterScalesFromPhysicalShift<MetricType> ScalesEstimatorType;
ScalesEstimatorType::Pointer scalesEstimator = ScalesEstimatorType::New();
scalesEstimator->SetMetric( metric );
scalesEstimator->SetTransformForward( true );
optimizer->SetScalesEstimator( scalesEstimator );
optimizer->SetDoEstimateLearningRateOnce( true );
}
// Software Guide : BeginLatex
//
// In case the optimizer never succeeds reaching the desired
// precision tolerance, it is prudent to establish a limit on the number of
// iterations to be performed. This maximum number is defined with the
// method \code{SetNumberOfIterations()}.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!SetNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetNumberOfIterations( 200 );
// Software Guide : EndCodeSnippet
// Connect an observer
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : BeginLatex
//
// ITKv4 facilitates a multi-level registration framework whereby each stage is
// different in the resolution of its virtual space and the smoothness of the
// fixed and moving images.
// These criteria need to be defined before registration starts. Otherwise,
// the default values will be used.
// In this example, we run a simple registration in one level with no
// space shrinking or smoothing on the input data.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels = 1;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 1 );
shrinkFactorsPerLevel[0] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 1 );
smoothingSigmasPerLevel[0] = 0;
registration->SetNumberOfLevels ( numberOfLevels );
registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The registration process is triggered by an invocation of the
// \code{Update()} method. If something goes wrong during the
// initialization or execution of the registration an exception will be
// thrown. We should therefore place the \code{Update()} method
// inside a \code{try/catch} block as illustrated in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In a real life application, you may attempt to recover from the error by
// taking more effective actions in the catch block. Here we are simply
// printing out a message and then terminating the execution of the program.
//
//
// The result of the registration process is obtained using the \code{GetTransform()}
// method that returns a constant pointer to the output transform.
//
// \index{itk::ImageRegistrationMethodv4!GetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::ConstPointer transform = registration->GetTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the case of the \doxygen{TranslationTransform}, there is a
// straightforward interpretation of the parameters. Each element of the
// array corresponds to a translation along one spatial dimension.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::ParametersType finalParameters = transform->GetParameters();
const double TranslationAlongX = finalParameters[0];
const double TranslationAlongY = finalParameters[1];
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The optimizer can be queried for the actual number of iterations
// performed to reach convergence. The \code{GetCurrentIteration()}
// method returns this value. A large number of iterations may be an
// indication that the learning rate has been set too small, which
// is undesirable since it results in long computational times.
//
// \index{itk::Gradient\-Descent\-Optimizerv4\-Template!GetCurrentIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfIterations = optimizer->GetCurrentIteration();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The value of the image metric corresponding to the last set of parameters
// can be obtained with the \code{GetValue()} method of the optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const double bestValue = optimizer->GetValue();
// Software Guide : EndCodeSnippet
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example over two of the images provided in
// \code{Examples/Data}:
//
// \begin{itemize}
// \item \code{BrainProtonDensitySliceBorder20.png}
// \item \code{BrainProtonDensitySliceShifted13x17y.png}
// \end{itemize}
//
// The second image is the result of intentionally translating the first
// image by $(13,17)$ millimeters. Both images have unit-spacing and
// are shown in Figure \ref{fig:FixedMovingImageRegistration1}. The
// registration takes 20 iterations and the resulting transform parameters are:
//
// \begin{verbatim}
// Translation X = 13.0012
// Translation Y = 16.9999
// \end{verbatim}
//
// As expected, these values match quite well the misalignment that we
// intentionally introduced in the moving image.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceShifted13x17y}
// \itkcaption[Fixed and Moving images in registration framework]{Fixed and
// Moving image provided as input to the registration method.}
// \label{fig:FixedMovingImageRegistration1}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// It is common, as the last step of a registration task, to use the
// resulting transform to map the moving image into the fixed image space.
//
// Before the mapping process, notice that we have not used the direct initialization
// of the output transform in this example, so the parameters of the moving initial
// transform are not reflected in the output parameters of the registration filter.
// Hence, a composite transform is needed to concatenate both initial and output
// transforms together.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CompositeTransform<
double,
Dimension > CompositeTransformType;
CompositeTransformType::Pointer outputCompositeTransform =
CompositeTransformType::New();
outputCompositeTransform->AddTransform( movingInitialTransform );
outputCompositeTransform->AddTransform(
registration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now the mapping process is easily done with the \doxygen{ResampleImageFilter}.
// Please refer to Section~\ref{sec:ResampleImageFilter} for details on the use
// of this filter. First, a ResampleImageFilter type is instantiated
// using the image types. It is convenient to use the fixed image type as
// the output type since it is likely that the transformed moving image
// will be compared with the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// A resampling filter is created and the moving image is connected as
// its input.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ResampleFilterType::Pointer resampler = ResampleFilterType::New();
resampler->SetInput( movingImageReader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The created output composite transform is also passed as input to the
// resampling filter.
//
// \index{itk::ImageRegistrationMethod!Resampling image}
// \index{itk::ImageRegistrationMethod!Pipeline}
// \index{itk::ImageRegistrationMethod!DataObjectDecorator}
// \index{itk::ImageRegistrationMethod!GetOutput()}
// \index{itk::DataObjectDecorator!Use in Registration}
// \index{itk::DataObjectDecorator!Get()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform( outputCompositeTransform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As described in Section \ref{sec:ResampleImageFilter}, the
// ResampleImageFilter requires additional parameters to be specified, in
// particular, the spacing, origin and size of the output image. The default
// pixel value is also set to a distinct gray level in order to highlight
// the regions that are mapped outside of the moving image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resampler->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resampler->SetOutputOrigin( fixedImage->GetOrigin() );
resampler->SetOutputSpacing( fixedImage->GetSpacing() );
resampler->SetOutputDirection( fixedImage->GetDirection() );
resampler->SetDefaultPixelValue( 100 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{ImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceBefore}
// \includegraphics[width=0.32\textwidth]{ImageRegistration1DifferenceAfter}
// \itkcaption[HelloWorld registration output images]{Mapped moving image and its
// difference with the fixed image before and after registration}
// \label{fig:ImageRegistration1Output}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The output of the filter is passed to a writer that will store the
// image in a file. An \doxygen{CastImageFilter} is used to convert the
// pixel type of the resampled image to the final type used by the
// writer. The cast and writer filters are instantiated below.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are created by invoking their \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
// Software Guide : EndCodeSnippet
writer->SetFileName( argv[3] );
// Software Guide : BeginLatex
//
// The filters are connected together and the \code{Update()} method of the
// writer is invoked in order to trigger the execution of the pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
caster->SetInput( resampler->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{ImageRegistration1Pipeline}
// \itkcaption[Pipeline structure of the registration example]{Pipeline
// structure of the registration example.}
// \label{fig:ImageRegistration1Pipeline}
// \end{figure}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The fixed image and the transformed moving image can easily be compared
// using the \doxygen{SubtractImageFilter}. This pixel-wise filter computes
// the difference between homologous pixels of its two input images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::SubtractImageFilter<
FixedImageType,
FixedImageType,
FixedImageType > DifferenceFilterType;
DifferenceFilterType::Pointer difference = DifferenceFilterType::New();
difference->SetInput1( fixedImageReader->GetOutput() );
difference->SetInput2( resampler->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Note that the use of subtraction as a method for comparing the images is
// appropriate here because we chose to represent the images using a pixel
// type \code{float}. A different filter would have been used if the pixel
// type of the images were any of the \code{unsigned} integer types.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Since the differences between the two images may correspond to very low
// values of intensity, we rescale those intensities with a
// \doxygen{RescaleIntensityImageFilter} in order to make them more visible.
// This rescaling will also make it possible to visualize the negative values
// even if we save the difference image in a file format that only supports
// unsigned pixel values\footnote{This is the case of PNG, BMP, JPEG and
// TIFF among other common file formats.}. We also reduce the
// \code{DefaultPixelValue} to ``1'' in order to prevent that value from
// absorbing the dynamic range of the differences between the two images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RescaleIntensityImageFilter<
FixedImageType,
OutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetInput( difference->GetOutput() );
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
resampler->SetDefaultPixelValue( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Its output can be passed to another writer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
WriterType::Pointer writer2 = WriterType::New();
writer2->SetInput( intensityRescaler->GetOutput() );
// Software Guide : EndCodeSnippet
if( argc > 4 )
{
writer2->SetFileName( argv[4] );
writer2->Update();
}
// Software Guide : BeginLatex
//
// For the purpose of comparison, the difference between the fixed image and
// the moving image before registration can also be computed by simply
// setting the transform to an identity transform. Note that the resampling
// is still necessary because the moving image does not necessarily have the
// same spacing, origin and number of pixels as the fixed image. Therefore a
// pixel-by-pixel operation cannot in general be performed. The resampling
// process with an identity transform will ensure that we have a
// representation of the moving image in the grid of the fixed image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
resampler->SetTransform( identityTransform );
// Software Guide : EndCodeSnippet
if( argc > 5 )
{
writer2->SetFileName( argv[5] );
writer2->Update();
}
// Software Guide : BeginLatex
//
// The complete pipeline structure of the current example is presented in
// Figure~\ref{fig:ImageRegistration1Pipeline}. The components of the
// registration method are depicted as well. Figure
// \ref{fig:ImageRegistration1Output} (left) shows the result of resampling
// the moving image in order to map it onto the fixed image space. The top
// and right borders of the image appear in the gray level selected with the
// \code{SetDefaultPixelValue()} in the ResampleImageFilter. The center
// image shows the difference between the fixed image and the original
// moving image (i.e. the difference before the registration is
// performed). The right image shows the difference between the fixed image
// and the transformed moving image (i.e. after the registration has
// been performed). Both difference images have been rescaled in intensity
// in order to highlight those pixels where differences exist. Note that
// the final registration is still off by a fraction of a pixel, which
// causes bands around edges of anatomical structures to appear in the
// difference image. A perfect registration would have produced a null
// difference image.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceTranslations}
// \includegraphics[height=0.44\textwidth]{ImageRegistration1TraceMetric}
// \itkcaption[Trace of translations and metrics during registration]{The sequence
// of translations and metric values at each iteration of the optimizer.}
// \label{fig:ImageRegistration1Trace}
// \end{figure}
//
// It is always useful to keep in mind that registration is essentially an
// optimization problem. Figure \ref{fig:ImageRegistration1Trace} helps to
// reinforce this notion by showing the trace of translations and values of
// the image metric at each iteration of the optimizer. It can be seen from
// the top figure that the step length is reduced progressively as the
// optimizer gets closer to the metric extrema. The bottom plot clearly
// shows how the metric value decreases as the optimization advances. The
// log plot helps to highlight the normal oscillations of the optimizer
// around the extrema value.
//
// In this section, we used a very simple example to introduce the basic components
// of a registration process in ITKv4. However, studying this example alone is not
// enough to start using the \doxygen{ImageRegistrationMethodv4}.
// In order to choose the best registration practice for a specific application,
// knowledge of other registration method instantiations and their capabilities are
// required.
// For example, direct initialization of the output optimizable transform is shown in
// section~\ref{sec:RigidRegistrationIn2D}. This method can simplify the registration
// process in many cases. Also, multi-resolution and multistage registration approaches
// are illustrated in sections~\ref{sec:MultiResolutionRegistration} and
// ~\ref{sec:MultiStageRegistration}.
// These examples illustrate the flexibility in the usage of ITKv4 registration method
// framework that can help to provide faster and more reliable registration processes.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|