File: ImageRegistration11.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (363 lines) | stat: -rw-r--r-- 12,489 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// This example illustrates how to combine the MutualInformation metric with an
// Evolutionary algorithm for optimization.  Evolutionary algorithms are
// naturally well-suited for optimizing the Mutual Information metric given its
// random and noisy behavior.
//
// The structure of the example is almost identical to the one illustrated in
// ImageRegistration4. Therefore we focus here on the setup that is
// specifically required for the evolutionary optimizer.
//
//
// \index{itk::ImageRegistrationMethodv4!Multi-Modality}
// \index{itk::OnePlusOneEvolutionaryOptimizerv4!Multi-Modality}
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethodv4.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkOnePlusOneEvolutionaryOptimizerv4.h"
#include "itkNormalVariateGenerator.h"
// Software Guide : EndCodeSnippet


#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"

#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"


//  The following section of code implements a Command observer
//  used to monitor the evolution of the registration process.
//
#include "itkCommand.h"
class CommandIterationUpdate : public itk::Command
{
public:
  typedef  CommandIterationUpdate   Self;
  typedef  itk::Command             Superclass;
  typedef itk::SmartPointer<Self>   Pointer;
  itkNewMacro( Self );

protected:
  CommandIterationUpdate() { m_LastMetricValue = 0.0; };

public:
  typedef itk::OnePlusOneEvolutionaryOptimizerv4<double>   OptimizerType;
  typedef   const OptimizerType *                          OptimizerPointer;

  void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *)caller, event);
    }

  void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
      OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
      if( ! itk::IterationEvent().CheckEvent( &event ) )
        {
        return;
        }
      double currentValue = optimizer->GetValue();
      // Only print out when the Metric value changes
      if( std::fabs( m_LastMetricValue - currentValue ) > 1e-7 )
        {
        std::cout << optimizer->GetCurrentIteration() << "   ";
        std::cout << currentValue << "   ";
        std::cout << optimizer->GetCurrentPosition() << std::endl;
        m_LastMetricValue = currentValue;
        }
    }

private:
  double m_LastMetricValue;
};


int main( int argc, char *argv[] )
{
  if( argc < 3 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile ";
    std::cerr << "outputImagefile ";
    std::cerr << "[samplingPercentage ] " << std::endl;
    return EXIT_FAILURE;
    }

  const    unsigned int    Dimension = 2;
  typedef  float           PixelType;

  typedef itk::Image< PixelType, Dimension >  FixedImageType;
  typedef itk::Image< PixelType, Dimension >  MovingImageType;

  typedef itk::TranslationTransform< double, Dimension >    TransformType;
  typedef itk::OnePlusOneEvolutionaryOptimizerv4< double >  OptimizerType;
  typedef itk::ImageRegistrationMethodv4<
                                    FixedImageType,
                                    MovingImageType >       RegistrationType;

  //  Software Guide : BeginLatex
  //
  //  In this example the image types and all registration components,
  //  except the metric, are declared as in Section
  //  \ref{sec:IntroductionImageRegistration}.
  //  The Mattes mutual information metric type is
  //  instantiated using the image types.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::MattesMutualInformationImageToImageMetricv4<
                                          FixedImageType,
                                          MovingImageType >    MetricType;
  // Software Guide : EndCodeSnippet

  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  MetricType::Pointer         metric        = MetricType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();

  registration->SetOptimizer(     optimizer     );
  registration->SetMetric( metric  );

  //  Software Guide : BeginLatex
  //
  // The histogram bins metric parameter is set as follows.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  metric->SetNumberOfHistogramBins( 20 );
  // Software Guide : EndCodeSnippet

  double samplingPercentage = 0.20;
  if( argc > 4 )
    {
    samplingPercentage = atof( argv[4] );
    }

  //  Software Guide : BeginLatex
  //
  //  As our previous discussion in section ~\ref{sec:MultiModalityRegistrationMattes},
  //  only a subsample of the virtual domain is needed to evaluate the metric.
  //  The number of spatial samples to be used depends on the content of the image, and
  //  the user can define the sampling percentage and the way that sampling operation
  //  is managed by the registration framework as follows. Sampling startegy can
  //  can be defined as \code{REGULAR} or \code{RANDOM}, while the default value
  //  is \code{NONE}.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  registration->SetMetricSamplingPercentage( samplingPercentage );

  RegistrationType::MetricSamplingStrategyType  samplingStrategy  =
                                                      RegistrationType::RANDOM;
  registration->SetMetricSamplingStrategy( samplingStrategy );
  // Software Guide : EndCodeSnippet

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );

  registration->SetFixedImage(    fixedImageReader->GetOutput()    );
  registration->SetMovingImage(   movingImageReader->GetOutput()   );

  fixedImageReader->Update();


  typedef TransformType::ParametersType ParametersType;
  ParametersType initialParameters( transform->GetNumberOfParameters() );

  initialParameters[0] = 0.0;  // Initial offset in mm along X
  initialParameters[1] = 0.0;  // Initial offset in mm along Y

  transform->SetParameters( initialParameters );

  registration->SetInitialTransform( transform );
  registration->InPlaceOn();

  //  Software Guide : BeginLatex
  //
  //  Evolutionary algorithms are based on testing random variations
  //  of parameters. In order to support the computation of random values,
  //  ITK provides a family of random number generators. In this example, we
  //  use the \doxygen{NormalVariateGenerator} which generates values with a
  //  normal distribution.
  //
  //  \index{itk::NormalVariateGenerator!New()}
  //  \index{itk::NormalVariateGenerator!Pointer}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Statistics::NormalVariateGenerator  GeneratorType;

  GeneratorType::Pointer generator = GeneratorType::New();
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  The random number generator must be initialized with a seed.
  //
  //  \index{itk::NormalVariateGenerator!Initialize()}
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  generator->Initialize(12345);
  // Software Guide : EndCodeSnippet


  //  Software Guide : BeginLatex
  //
  //  Now we set the optimizer parameters.
  //
  //  Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  optimizer->SetNormalVariateGenerator( generator );
  optimizer->Initialize( 10 );
  optimizer->SetEpsilon( 1.0 );
  optimizer->SetMaximumIteration( 4000 );
  // Software Guide : EndCodeSnippet

  // One level registration process without shrinking and smoothing.
  //
  const unsigned int numberOfLevels = 1;

  RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
  shrinkFactorsPerLevel.SetSize( 1 );
  shrinkFactorsPerLevel[0] = 1;

  RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
  smoothingSigmasPerLevel.SetSize( 1 );
  smoothingSigmasPerLevel[0] = 0;

  registration->SetNumberOfLevels ( numberOfLevels );
  registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
  registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );

  // Create the Command observer and register it with the optimizer.
  //
  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
  optimizer->AddObserver( itk::IterationEvent(), observer );


  try
    {
    registration->Update();
    std::cout << "Registration completed!" << std::endl;
    std::cout << "Optimizer stop condition: "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  ParametersType finalParameters = transform->GetParameters();

  double TranslationAlongX = finalParameters[0];
  double TranslationAlongY = finalParameters[1];

  unsigned int numberOfIterations = optimizer->GetCurrentIteration();

  double bestValue = optimizer->GetValue();


  // Print out results
  //
  std::cout << "Result = " << std::endl;
  std::cout << " Translation X = " << TranslationAlongX  << std::endl;
  std::cout << " Translation Y = " << TranslationAlongY  << std::endl;
  std::cout << " Iterations    = " << numberOfIterations << std::endl;
  std::cout << " Metric value  = " << bestValue          << std::endl;


  //  Software Guide : BeginLatex
  //
  //  This example is executed using the same multi-modality images as
  //  in the previous one.  The registration converges after $24$ iterations and produces
  //  the following results:
  //
  //  \begin{verbatim}
  //  Translation X = 13.1719
  //  Translation Y = 16.9006
  //  \end{verbatim}
  //  These values are a very close match to
  //  the true misalignment introduced in the moving image.
  //
  //  Software Guide : EndLatex


  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( transform );
  resample->SetInput( movingImageReader->GetOutput() );

  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 100 );


  typedef  unsigned char                           OutputPixelType;
  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
  typedef itk::CastImageFilter<
                        FixedImageType,
                        OutputImageType > CastFilterType;
  typedef itk::ImageFileWriter< OutputImageType >  WriterType;

  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();

  writer->SetFileName( argv[3] );

  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  writer->Update();

  return EXIT_SUCCESS;
}