File: ImageRegistrationHistogramPlotter.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (768 lines) | stat: -rw-r--r-- 27,200 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

//  Software Guide : Begin TODO HACK FIXME CommandLineArgs
//  INPUTS:  {BrainT1SliceBorder20.png}
//  INPUTS:  {BrainProtonDensitySliceShifted13x17y.png}
//  ARGUMENTS:    RegisteredImage.png 0
//  OUTPUTS: {JointEntropyHistogramPriorToRegistration.png}
//  OUTPUTS: {JointEntropyHistogramAfterRegistration.png}
//  ARGUMENTS:    128
//  Software Guide : End TODO HACK FIXME CommandLineArgs

//  Software Guide : BeginLatex
//
//  When fine tuning the parameters of an image registration process it is not
//  always clear what factor are having a larger impact on the behavior of the
//  registration. Even plotting the values of the metric and the transform
//  parameters may not provide a clear indication on the best way to modify the
//  optimizer and metric parameters in order to improve the convergence rate
//  and stability. In such circumstances it is useful to take a closer look at
//  the internals of the components involved in computing the registration. One
//  of the critical components is, of course, the image metric. This section
//  illustrates a mechanism that can be used for monitoring the behavior of the
//  Mutual Information metric by continuously looking at the joint histogram at
//  regular intervals during the iterations of the optimizer.
//
//  This particular example shows how to use the
//  \doxygen{HistogramToEntropyImageFilter} class in order to get access to the
//  joint histogram that is internally computed by the metric. This class
//  represents the joint histogram as a $2D$ image and therefore can take
//  advantage of the IO functionalities described in chapter~\ref{sec:IO}.  The
//  example registers two images using the gradient descent optimizer.  The
//  transform used here is a simple translation transform. The metric is a
//  \doxygen{MutualInformationHistogramImageToImageMetric}.
//
//  In the code below we create a helper class called the
//  \code{HistogramWriter}.  Its purpose is to save the joint histogram into a
//  file using any of the file formats supported by ITK. This object is invoked
//  after every iteration of the optimizer.  The writer here saves the joint
//  histogram into files with names: \code{JointHistogramXXX.mhd} where
//  \code{XXX} is replaced with the iteration number. The output image contains
//  the joint entropy histogram given by
//  \begin{equation}
//  f_{ij} = -p_{ij} \log_2 ( p_{ij} )
//  \end{equation}
//
//  where the indices $i$ and $j$ identify the location of a bin in the Joint
//  Histogram of the two images and are in the ranges $i \in [0:N-1]$ and  $j
//  \in [0:M-1]$. The image $f$ representing the joint histogram has $N x M$
//  pixels because the intensities of the Fixed image are quantized into $N$
//  histogram bins and the intensities of the Moving image are quantized into
//  $M$ histogram bins. The probability value $p_{ij}$ is computed from the
//  frequency count of the histogram bins.
//  \begin{equation}
//  p_{ij} = \frac{q_{ij}}{\sum_{i=0}^{N-1} \sum_{j=0}^{M-1} q_{ij}}
//  \end{equation}
//  The value $q_{ij}$ is the frequency of a bin in the histogram and it is
//  computed as the number of pixels where the Fixed image has intensities in
//  the range of bin $i$ and the Moving image has intensities on the range of
//  bin $j$.  The value $p_{ij}$ is therefore the probability of the occurrence
//  of the measurement vector centered in the bin ${ij}$.  The filter produces
//  an output image of pixel type \code{double}. For details on the use of
//  Histograms in ITK please refer to section~\ref{sec:Histogram}.
//
//  Depending on whether you want to see the joint histogram frequencies
//  directly, or the joint probabilities, or log of joint probabilities, you
//  may want to instantiate respectively any of the following classes
//
//  \begin{itemize}
//  \item \doxygen{HistogramToIntensityImageFilter}
//  \item \doxygen{HistogramToProbabilityImageFilter}
//  \item \doxygen{HistogramToLogProbabilityImageFilter}
//  \end{itemize}
//
//  \index{Histogram\-To\-Log\-Probability\-ImageFilter}
//  \index{Histogram\-To\-Intensity\-Image\-Filter}
//  \index{Histogram\-To\-Probability\-Image\-Filter}
//
//  The use of all of these classes is very similar. Note that the log of the
//  probability is equivalent to units of information, also known as
//  \textbf{bits}, more details on this concept can be found in
//  section~\ref{sec:ComputingImageEntropy}
//
//   Software Guide : EndLatex


#include "itkImageRegistrationMethod.h"
#include "itkTranslationTransform.h"
#include "itkRegularStepGradientDescentOptimizer.h"
#include "itkNormalizeImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"

#include <iomanip>

// Software Guide : BeginLatex
//
// The header files of the classes featured in this example are included as a
// first step.
//
// \index{Histogram\-To\-Probability\-Image\-Filter!Header}
// \index{Mutual\-Information\-Histogram\-Image\-To\-Image\-Metric!Header}
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkHistogramToEntropyImageFilter.h"
#include "itkMutualInformationHistogramImageToImageMetric.h"
// Software Guide : EndCodeSnippet

#include "itkCommand.h"

#include <stdio.h>

// Functor to rescale plot the histogram on a log scale and invert it.
template< class TInput >
class RescaleDynamicRangeFunctor
{
public:
  typedef unsigned char OutputPixelType;
  RescaleDynamicRangeFunctor() {};
  ~RescaleDynamicRangeFunctor() {};
  inline OutputPixelType operator()( const TInput &A )
    {
    if( (A > 0.0) )
      {
      if( -(30.0 * std::log(A)) > 255 )
        {
        return static_cast<OutputPixelType>( 255 );
        }
      else
        {
        return itk::Math::Round<OutputPixelType>( -(30.0 * std::log(A)) );
        }
      }
    else
      {
      return static_cast<OutputPixelType>(255);
      }
    }
};

// Class to write the joint histograms.
// Software : BeginLatex
//
// Here we will create a simple class to write the joint histograms. This
// class, that we arbitrarily name as \code{HistogramWriter}, uses internally
// the \doxygen{HistogramToEntropyImageFilter} class among others.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
namespace
{
class HistogramWriter
{
public:
  typedef float InternalPixelType;
  itkStaticConstMacro( Dimension, unsigned int, 2);

  typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

  typedef itk::MutualInformationHistogramImageToImageMetric<
                                        InternalImageType,
                                        InternalImageType >    MetricType;
  // Software Guide : EndCodeSnippet

  typedef MetricType::Pointer   MetricPointer;

  // Software Guide : BeginCodeSnippet
  typedef MetricType::HistogramType   HistogramType;

  typedef itk::HistogramToEntropyImageFilter< HistogramType, InternalImageType>
                                HistogramToEntropyImageFilterType;

  typedef HistogramToEntropyImageFilterType::Pointer
                                HistogramToImageFilterPointer;

  typedef HistogramToEntropyImageFilterType::OutputImageType OutputImageType;

  typedef itk::ImageFileWriter< OutputImageType > HistogramFileWriterType;
  typedef HistogramFileWriterType::Pointer        HistogramFileWriterPointer;
  // Software Guide : EndCodeSnippet

  typedef HistogramToEntropyImageFilterType::OutputPixelType OutputPixelType;

  HistogramWriter():
    m_Metric(0)
    {

    // Software Guide : BeginLatex
    //
    // The \code{HistogramWriter} has a member variable \code{m\_Filter} of type
    // HistogramToEntropyImageFilter.
    //
    // Software Guide : EndLatex

    // Software Guide : BeginCodeSnippet
    this->m_Filter = HistogramToEntropyImageFilterType::New();
    // Software Guide : EndCodeSnippet

    // Software Guide : BeginLatex
    //
    // It also has an ImageFileWriter that has been instantiated using the image
    // type that is produced as output from the histogram to image filter. We
    // connect the output of the filter as input to the writer.
    //
    // Software Guide : EndLatex

    // Software Guide : BeginCodeSnippet
    this->m_HistogramFileWriter = HistogramFileWriterType::New();
    this->m_HistogramFileWriter->SetInput( this->m_Filter->GetOutput() );
    // Software Guide : EndCodeSnippet

    }

  ~HistogramWriter() { };

  void SetMetric( MetricPointer metric )
    {
    this->m_Metric = metric;
    }

  MetricPointer GetMetric() const
    {
    return this->m_Metric;
    }

  void WriteHistogramFile( unsigned int iterationNumber )
  {
    std::string outputFileBase = "JointHistogram";
    std::ostringstream outputFilename;
    outputFilename << outputFileBase
                   << "."
                   << std::setfill('0') << std::setw(3) << iterationNumber
                   << "."
                   << "mhd";
    m_HistogramFileWriter->SetFileName( outputFilename.str() );
    this->m_Filter->SetInput( this->GetMetric()->GetHistogram() );
    this->m_Filter->Modified();

    try
      {
      m_Filter->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ERROR: ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      }

    try
      {
      m_HistogramFileWriter->Update();
      }
    catch( itk::ExceptionObject & excp )
      {
      std::cerr << "Exception thrown " << excp << std::endl;
      }

    std::cout << "Joint Histogram file: ";
    std::cout << outputFilename.str() << " written" << std::endl;

    }

  // Software Guide : BeginLatex
  //
  // The method of this class that is most relevant to our discussion is the
  // one that writes the image into a file. In this method we assign the output
  // histogram of the metric to the input of the histogram to image filter. In
  // this way we construct an ITK $2D$ image where every pixel corresponds to
  // one of the Bins of the joint histogram computed by the Metric.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  void WriteHistogramFile( std::string &outputFilename  )
    {
    // Software Guide : EndCodeSnippet


    // Software Guide : BeginCodeSnippet
    this->m_Filter->SetInput( this->GetMetric()->GetHistogram() );
    this->m_Filter->Modified();

    // Software Guide : EndCodeSnippet

    // Software Guide : BeginLatex
    //
    // The output of the filter is connected to a filter that will rescale the
    // intensities in order to improve the visualization of the values. This is
    // done because it is common to find histograms of medical images that have
    // a minority of bins that are largely dominant. Visualizing such histogram
    // in direct values is challenging because only the dominant bins tend to
    // become visible.
    //
    // Software Guide : EndLatex


    //Write the joint histogram as outputFilename. Also intensity window
    //the image by lower and upper thresholds and rescale the image to
    //8 bits.
    typedef itk::Image< unsigned char, Dimension > RescaledOutputImageType;

    typedef RescaleDynamicRangeFunctor<
                              OutputPixelType
                                      > RescaleDynamicRangeFunctorType;

    typedef itk::UnaryFunctorImageFilter<
                                OutputImageType,
                                RescaledOutputImageType,
                                RescaleDynamicRangeFunctorType
                                      > RescaleDynamicRangeFilterType;

    RescaleDynamicRangeFilterType::Pointer rescaler =
                                RescaleDynamicRangeFilterType::New();

    rescaler->SetInput( m_Filter->GetOutput() );

    typedef itk::ImageFileWriter< RescaledOutputImageType > RescaledWriterType;

    RescaledWriterType::Pointer rescaledWriter =
                                RescaledWriterType::New();

    rescaledWriter->SetInput( rescaler->GetOutput() );

    rescaledWriter->SetFileName( outputFilename );

    try
      {
      m_Filter->Update();
      }
    catch( itk::ExceptionObject & err )
      {
      std::cerr << "ERROR: ExceptionObject caught !" << std::endl;
      std::cerr << err << std::endl;
      }

    try
      {
      rescaledWriter->Update();
      }
    catch( itk::ExceptionObject & excp )
      {
      std::cerr << "Exception thrown " << excp << std::endl;
      }

    std::cout << "Joint Histogram file: " << outputFilename <<
        " written" << std::endl;
    }

// Software Guide : BeginLatex
//
// The following are the member variables of our \code{HistogramWriter} class.
//
// Software Guide : EndLatex


// Software Guide : BeginCodeSnippet

private:
  MetricPointer                   m_Metric;
  HistogramToImageFilterPointer   m_Filter;
  HistogramFileWriterPointer      m_HistogramFileWriter;
  // Software Guide : EndCodeSnippet
  std::string   m_OutputFile;
};

// Command - observer invoked after every iteration of the optimizer
class CommandIterationUpdate : public itk::Command
{
public:
  typedef  CommandIterationUpdate   Self;
  typedef  itk::Command             Superclass;
  typedef  itk::SmartPointer<Self>  Pointer;
  itkSimpleNewMacro( Self );

protected:
  CommandIterationUpdate()
    {
    m_WriteHistogramsAfterEveryIteration = false;
    }

public:

  typedef   itk::RegularStepGradientDescentOptimizer     OptimizerType;
  typedef   const OptimizerType *                        OptimizerPointer;

  void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
    {
    Execute( (const itk::Object *)caller, event);
    }

  void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
    {
    OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
    if( ! itk::IterationEvent().CheckEvent( &event ) || optimizer == ITK_NULLPTR )
      {
      return;
      }
    std::cout << optimizer->GetCurrentIteration() << "   ";
    std::cout << optimizer->GetValue() << "   ";
    std::cout << optimizer->GetCurrentPosition() << std::endl;

    // Write the joint histogram as a file JointHistogramXXX.mhd
    // where \code{XXX} is the iteration number


    //Write Joint Entropy Histogram prior to registration.
    if( optimizer->GetCurrentIteration() == 0 )
      {
      // Software Guide : BeginLatex
      //
      // We invoke the histogram writer within the Command/Observer of the
      // optimizer to write joint histograms after every iteration.
      //
      // Software Guide : EndLatex

      // Software Guide : BeginCodeSnippet
      m_JointHistogramWriter.WriteHistogramFile( m_InitialHistogramFile );
      // Software Guide : EndCodeSnippet
      }
    if( m_WriteHistogramsAfterEveryIteration )
      {
      m_JointHistogramWriter.WriteHistogramFile(
                                           optimizer->GetCurrentIteration() );
      }
    }

  void SetWriteHistogramsAfterEveryIteration( bool value )
    {
    m_WriteHistogramsAfterEveryIteration = value;
    }

  void SetInitialHistogramFile( const char * filename )
    {
    m_InitialHistogramFile = filename;
    }

  HistogramWriter m_JointHistogramWriter;

private:
  bool              m_WriteHistogramsAfterEveryIteration;
  std::string       m_InitialHistogramFile;

};

} // end anonymous namespace


int main( int argc, char *argv[] )
{
  if( argc < 8 )
    {
    std::cerr << "Missing Parameters " << std::endl;
    std::cerr << "Usage: " << argv[0];
    std::cerr << " fixedImageFile  movingImageFile ";
    std::cerr << "outputImagefile WriteJointHistogramsAfterEveryIteration ";
    std::cerr << "JointHistogramPriorToRegistrationFile ";
    std::cerr << "JointHistogramAfterRegistrationFile ";
    std::cerr << "NumberOfHistogramBinsForWritingTheMutualInformationHistogramMetric";
    std::cerr <<  std::endl;
    return EXIT_FAILURE;
    }

  typedef  unsigned char  PixelType;

  const unsigned int Dimension = 2;

  typedef itk::Image< PixelType, Dimension >         FixedImageType;
  typedef itk::Image< PixelType, Dimension >         MovingImageType;
  typedef   float                                    InternalPixelType;
  typedef itk::Image< InternalPixelType, Dimension > InternalImageType;

  typedef itk::TranslationTransform< double, Dimension > TransformType;
  typedef itk::RegularStepGradientDescentOptimizer       OptimizerType;
  typedef itk::LinearInterpolateImageFunction<
                                    InternalImageType,
                                    double             > InterpolatorType;
  typedef itk::ImageRegistrationMethod<
                                    InternalImageType,
                                    InternalImageType >  RegistrationType;

  typedef itk::MutualInformationHistogramImageToImageMetric<
                                          InternalImageType,
                                          InternalImageType >    MetricType;

  // Software Guide : BeginLatex
  //
  // We instantiate an optimizer, interpolator and the registration method as
  // shown in previous examples.
  //
  // Software Guide : EndLatex

  TransformType::Pointer      transform     = TransformType::New();
  OptimizerType::Pointer      optimizer     = OptimizerType::New();
  InterpolatorType::Pointer   interpolator  = InterpolatorType::New();
  RegistrationType::Pointer   registration  = RegistrationType::New();
  MetricType::Pointer         metric        = MetricType::New();


  registration->SetOptimizer(     optimizer     );
  registration->SetTransform(     transform     );
  registration->SetInterpolator(  interpolator  );

  // Software Guide : BeginLatex
  //
  // The number of bins in the metric is set with the \code{SetHistogramSize()}
  // method. This will determine the number of pixels along each dimension of
  // the joint histogram. Note that in this case we arbitrarily decided to use
  // the same number of bins for the intensities of the Fixed image and those
  // of the Moving image. However, this does not have to be the case, we could
  // have selected different numbers of bins for each image.
  //
  // \index{Mutual\-Information\-Histogram\-Image\-To\-Image\-Metric!SetHistogramSize()}
  // \index{SetHistogramSize(),Mutual\-Information\-Histogram\-Image\-To\-Image\-Metric}
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  unsigned int numberOfHistogramBins = atoi( argv[7] );
  MetricType::HistogramType::SizeType histogramSize;
  histogramSize.SetSize(2);
  histogramSize[0] = numberOfHistogramBins;
  histogramSize[1] = numberOfHistogramBins;
  metric->SetHistogramSize( histogramSize );
  // Software Guide : EndCodeSnippet

  const unsigned int numberOfParameters = transform->GetNumberOfParameters();
  typedef MetricType::ScalesType ScalesType;
  ScalesType scales( numberOfParameters );
  scales.Fill( 1.0 );
  metric->SetDerivativeStepLengthScales(scales);

  CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();

  // Set the metric for the joint histogram writer
  observer->m_JointHistogramWriter.SetMetric( metric );

  registration->SetMetric( metric  );

  typedef itk::ImageFileReader< FixedImageType  > FixedImageReaderType;
  typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;

  FixedImageReaderType::Pointer  fixedImageReader  = FixedImageReaderType::New();
  MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();

  fixedImageReader->SetFileName(  argv[1] );
  movingImageReader->SetFileName( argv[2] );


  typedef itk::NormalizeImageFilter<
                                FixedImageType,
                                InternalImageType
                                        > FixedNormalizeFilterType;

  typedef itk::NormalizeImageFilter<
                                MovingImageType,
                                InternalImageType
                                              > MovingNormalizeFilterType;

  FixedNormalizeFilterType::Pointer fixedNormalizer =
                                            FixedNormalizeFilterType::New();

  MovingNormalizeFilterType::Pointer movingNormalizer =
                                            MovingNormalizeFilterType::New();
  typedef itk::DiscreteGaussianImageFilter<
                                      InternalImageType,
                                      InternalImageType
                                                    > GaussianFilterType;

  GaussianFilterType::Pointer fixedSmoother  = GaussianFilterType::New();
  GaussianFilterType::Pointer movingSmoother = GaussianFilterType::New();

  fixedSmoother->SetVariance( 2.0 );
  movingSmoother->SetVariance( 2.0 );
  fixedNormalizer->SetInput(  fixedImageReader->GetOutput() );
  movingNormalizer->SetInput( movingImageReader->GetOutput() );

  fixedSmoother->SetInput( fixedNormalizer->GetOutput() );
  movingSmoother->SetInput( movingNormalizer->GetOutput() );

  registration->SetFixedImage(    fixedSmoother->GetOutput()    );
  registration->SetMovingImage(   movingSmoother->GetOutput()   );


  try
    {
    fixedNormalizer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  registration->SetFixedImageRegion(
       fixedNormalizer->GetOutput()->GetBufferedRegion() );

  typedef RegistrationType::ParametersType ParametersType;
  ParametersType initialParameters( transform->GetNumberOfParameters() );

  initialParameters[0] = 0.0;  // Initial offset in mm along X
  initialParameters[1] = 0.0;  // Initial offset in mm along Y

  registration->SetInitialTransformParameters( initialParameters );


  optimizer->SetMaximumStepLength( 4.00 );
  optimizer->SetMinimumStepLength( 0.01 );
  optimizer->SetRelaxationFactor(  0.90 );
  optimizer->SetNumberOfIterations( 200 );
  optimizer->MaximizeOn();

  optimizer->AddObserver( itk::IterationEvent(), observer );


  observer->SetInitialHistogramFile( argv[5] );

  if( atoi(argv[4]) )
    {
    observer->SetWriteHistogramsAfterEveryIteration( true );
    }


  try
    {
    registration->Update();
    std::cout << "Optimizer stop condition: "
              << registration->GetOptimizer()->GetStopConditionDescription()
              << std::endl;
    }
  catch( itk::ExceptionObject & err )
    {
    std::cout << "ExceptionObject caught !" << std::endl;
    std::cout << err << std::endl;
    return EXIT_FAILURE;
    }

  ParametersType finalParameters = registration->GetLastTransformParameters();

  double TranslationAlongX = finalParameters[0];
  double TranslationAlongY = finalParameters[1];

  unsigned int numberOfIterations = optimizer->GetCurrentIteration();

  double bestValue = optimizer->GetValue();


  std::cout << "Result = " << std::endl;
  std::cout << " Translation X = " << TranslationAlongX  << std::endl;
  std::cout << " Translation Y = " << TranslationAlongY  << std::endl;
  std::cout << " Iterations    = " << numberOfIterations << std::endl;
  std::cout << " Metric value  = " << bestValue          << std::endl;

  //Write Joint Entropy Histogram after registration.
  std::string histogramAfter(argv[6]);
  try
    {
    observer->m_JointHistogramWriter.WriteHistogramFile( histogramAfter );
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ERROR: ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    return EXIT_FAILURE;
    }

  typedef itk::ResampleImageFilter<
                            MovingImageType,
                            FixedImageType >    ResampleFilterType;

  TransformType::Pointer finalTransform = TransformType::New();

  finalTransform->SetParameters( finalParameters );
  finalTransform->SetFixedParameters( transform->GetFixedParameters() );

  ResampleFilterType::Pointer resample = ResampleFilterType::New();

  resample->SetTransform( finalTransform );
  resample->SetInput( movingImageReader->GetOutput() );

  FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();

  resample->SetSize(    fixedImage->GetLargestPossibleRegion().GetSize() );
  resample->SetOutputOrigin(  fixedImage->GetOrigin() );
  resample->SetOutputSpacing( fixedImage->GetSpacing() );
  resample->SetOutputDirection( fixedImage->GetDirection() );
  resample->SetDefaultPixelValue( 100 );


  typedef  unsigned char  OutputPixelType;

  typedef itk::Image< OutputPixelType, Dimension > OutputImageType;

  typedef itk::CastImageFilter<
                        FixedImageType,
                        OutputImageType > CastFilterType;

  typedef itk::ImageFileWriter< OutputImageType >  WriterType;


  WriterType::Pointer      writer =  WriterType::New();
  CastFilterType::Pointer  caster =  CastFilterType::New();


  writer->SetFileName( argv[3] );


  caster->SetInput( resample->GetOutput() );
  writer->SetInput( caster->GetOutput()   );
  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & err )
    {
    std::cerr << "ERROR: ExceptionObject caught !" << std::endl;
    std::cerr << err << std::endl;
    }

  return EXIT_SUCCESS;

}

// Software Guide : BeginLatex
//
// Mutual information attempts to re-group the joint entropy histograms into a
// more ``meaningful'' formation. An optimizer that minimizes the joint entropy
// seeks a transform that produces a small number of high value bins and a
// large majority of almost zero bins. Multi-modality registration seeks such a
// transform while also attempting to maximize the information contribution by
// the fixed and the moving images in the overall region of the metric.
//
// A T1 MRI (fixed image) and a proton density MRI (moving image) as shown in Figure
// \ref{fig:FixedMovingImageRegistration2}
// are provided as input to this example.
//
// Figure \ref{fig:JointEntropyHistograms} shows the joint histograms before and
// after registration.
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{JointEntropyHistogramPriorToRegistration}
// \includegraphics[width=0.44\textwidth]{JointEntropyHistogramAfterRegistration}
// \itkcaption[Multi-modality joint histograms]{Joint entropy histograms before and
// after registration. The final transform was within half a pixel of true misalignment.}
// \label{fig:JointEntropyHistograms}
// \end{figure}
//  Software Guide : EndLatex