1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1SliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceShifted13x17y.png}
// OUTPUTS: {MultiResImageRegistration1Output.png}
// ARGUMENTS: 128
// OUTPUTS: {MultiResImageRegistration1CheckerboardBefore.png}
// OUTPUTS: {MultiResImageRegistration1CheckerboardAfter.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// \index{itk::ImageRegistrationMethodv4!Multi-Resolution}
// \index{itk::ImageRegistrationMethodv4!Multi-Modality}
//
// This example illustrates the use of the
// \doxygen{ImageRegistrationMethodv4} to solve a simple
// multi-modality registration problem by a multi-resolution approach.
// Since ITKv4 registration method is designed based on a multi-resolution
// structure, a separate set of classes are no longer required to run
// the registration process of this example.
//
// This a great advantage over the previous versions of ITK, as
// in ITKv3 we had to use a different filter
// (\doxygen{MultiResolutionImageRegistrationMethod})
// to run a multi-resolution process. Also, we had to use image pyramids filters
// (\doxygen{MultiResolutionPyramidImageFilter}) for creating the sequence of
// downsampled images. Hence, you can see how ITKv4 framework is
// more user-friendly in more complex situations.
//
// To begin the example, we include the headers of the registration
// components we will use.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethodv4.h"
#include "itkTranslationTransform.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkRegularStepGradientDescentOptimizerv4.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkCheckerBoardImageFilter.h"
// Software Guide : BeginLatex
//
// The ImageRegistrationMethodv4 solves a registration
// problem in a coarse-to-fine manner as illustrated in Figure
// \ref{fig:MultiResRegistrationConcept}. The registration is first performed
// at the coarsest level using the images at the first level of the fixed and
// moving image pyramids. The transform parameters determined by the
// registration are then used to initialize the registration at the next finer
// level using images from the second level of the pyramids. This process is
// repeated as we work up to the finest level of image resolution.
//
// \begin{figure}
// \center
// \includegraphics[width=\textwidth]{MultiResRegistrationConcept}
// \itkcaption[Conceptual representation of Multi-Resolution
// registration]{Conceptual representation of the multi-resolution registration process.}
// \label{fig:MultiResRegistrationConcept}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// In a typical registration scenario, a user will tweak component settings
// or even swap out components between multi-resolution levels. For example,
// when optimizing at a coarse resolution, it may be possible to take more
// aggressive step sizes and have a more relaxed convergence criterion.
//
// Tweaking the components between resolution levels can be done using ITK's
// implementation of the \emph{Command/Observer} design pattern. Before
// beginning registration at each resolution level,
// where ImageRegistrationMethodv4 invokes a
// \code{MultiResolutionIterationEvent()}. The registration components can
// be changed by implementing a \doxygen{Command} which responds to the
// event. A brief description of the interaction between events and commands was
// previously presented in Section \ref{sec:MonitoringImageRegistration}.
//
// We will illustrate this mechanism by changing the parameters of the
// optimizer between each resolution level by way of a simple interface
// command. First, we include the header file of the Command class.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCommand.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Our new interface command class is called
// \code{RegistrationInterfaceCommand}. It derives from
// Command and is templated over the
// multi-resolution registration type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
template <typename TRegistration>
class RegistrationInterfaceCommand : public itk::Command
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We then define \code{Self}, \code{Superclass}, \code{Pointer},
// \code{New()} and a constructor in a similar fashion to the
// \code{CommandIterationUpdate} class in Section
// \ref{sec:MonitoringImageRegistration}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
public:
typedef RegistrationInterfaceCommand Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
RegistrationInterfaceCommand() {};
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For convenience, we declare types useful for converting pointers
// in the \code{Execute()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
public:
typedef TRegistration RegistrationType;
typedef RegistrationType * RegistrationPointer;
typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
typedef OptimizerType * OptimizerPointer;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Two arguments are passed to the \code{Execute()} method: the first
// is the pointer to the object which invoked the event and the
// second is the event that was invoked.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void Execute( itk::Object * object,
const itk::EventObject & event) ITK_OVERRIDE
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// First we verify that the event invoked is of the right type,
// \code{itk::MultiResolutionIterationEvent()}.
// If not, we return without any further action.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if( !(itk::MultiResolutionIterationEvent().CheckEvent( &event ) ) )
{
return;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We then convert the input object pointer to a RegistrationPointer.
// Note that no error checking is done here to verify the
// \code{dynamic\_cast} was successful since we know the actual object
// is a registration method. Then we ask for the optimizer object
// from the registration method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
RegistrationPointer registration =
static_cast<RegistrationPointer>( object );
OptimizerPointer optimizer = static_cast< OptimizerPointer >(
registration->GetModifiableOptimizer() );
// Software Guide : EndCodeSnippet
unsigned int currentLevel = registration->GetCurrentLevel();
typename RegistrationType::ShrinkFactorsPerDimensionContainerType shrinkFactors =
registration->GetShrinkFactorsPerDimension( currentLevel );
typename RegistrationType::SmoothingSigmasArrayType smoothingSigmas =
registration->GetSmoothingSigmasPerLevel();
std::cout << "-------------------------------------" << std::endl;
std::cout << " Current level = " << currentLevel << std::endl;
std::cout << " shrink factor = " << shrinkFactors << std::endl;
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
std::cout << std::endl;
// Software Guide : BeginLatex
//
// If this is the first resolution level we set the learning rate
// (representing the first step size) and the minimum step length (representing
// the convergence criterion) to large values. At each subsequent resolution
// level, we will reduce the minimum step length by a factor of 5 in order to
// allow the optimizer to focus on progressively smaller regions. The learning
// rate is set up to the current step length. In this way, when the
// optimizer is reinitialized at the beginning of the registration process for
// the next level, the step length will simply start with the last value used
// for the previous level. This will guarantee the continuity of the path
// taken by the optimizer through the parameter space.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
if ( registration->GetCurrentLevel() == 0 )
{
optimizer->SetLearningRate( 16.00 );
optimizer->SetMinimumStepLength( 2.5 );
}
else
{
optimizer->SetLearningRate( optimizer->GetCurrentStepLength() );
optimizer->SetMinimumStepLength(
optimizer->GetMinimumStepLength() * 0.2 );
}
// Software Guide : EndCodeSnippet
}
// Software Guide : BeginLatex
//
// Another version of the \code{Execute()} method accepting a \code{const}
// input object is also required since this method is defined as pure virtual
// in the base class. This version simply returns without taking any action.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
void Execute(const itk::Object * , const itk::EventObject & ) ITK_OVERRIDE
{
return;
}
};
// Software Guide : EndCodeSnippet
// The following section of code implements an observer
// that will monitor the evolution of the registration process.
//
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate(): m_CumulativeIterationIndex(0) {};
public:
typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( !(itk::IterationEvent().CheckEvent( &event )) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << " ";
std::cout << m_CumulativeIterationIndex++ << std::endl;
}
private:
unsigned int m_CumulativeIterationIndex;
};
int main( int argc, const char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [backgroundGrayLevel]";
std::cerr << " [checkerBoardBefore] [checkerBoardAfter]";
std::cerr << " [numberOfBins] " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
const std::string fixedImageFile = argv[1];
const std::string movingImageFile = argv[2];
const std::string outImagefile = argv[3];
const PixelType backgroundGrayLevel = (argc >4 )? atoi(argv[4]): 100;
const std::string checkerBoardBefore = (argc >5 )? argv[5]: "";
const std::string checkerBoardAfter = (argc >6 )? argv[6]: "";
const int numberOfBins = (argc >7 )? atoi(argv[7]): 0;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// The fixed and moving image types are defined as in previous
// examples. The downsampled images for different resolution levels
// are created internally by the registration method based on the
// values provided for \emph{ShrinkFactor} and \emph{SmoothingSigma}
// vectors.
//
// The types for the registration components are then derived using
// the fixed and moving image type, as in previous examples.
//
// Software Guide : EndLatex
typedef itk::TranslationTransform< double, Dimension > TransformType;
typedef itk::RegularStepGradientDescentOptimizerv4<double> OptimizerType;
typedef itk::MattesMutualInformationImageToImageMetricv4<
FixedImageType,
MovingImageType > MetricType;
typedef itk::ImageRegistrationMethodv4<
FixedImageType,
MovingImageType,
TransformType > RegistrationType;
// All the components are instantiated using their \code{New()} method
// and connected to the registration object as in previous example.
//
TransformType::Pointer transform = TransformType::New();
OptimizerType::Pointer optimizer = OptimizerType::New();
MetricType::Pointer metric = MetricType::New();
RegistrationType::Pointer registration = RegistrationType::New();
registration->SetOptimizer( optimizer );
registration->SetMetric( metric );
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader =
FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader =
MovingImageReaderType::New();
fixedImageReader->SetFileName( fixedImageFile );
movingImageReader->SetFileName( movingImageFile );
registration->SetFixedImage( fixedImageReader->GetOutput() );
registration->SetMovingImage( movingImageReader->GetOutput() );
typedef OptimizerType::ParametersType ParametersType;
ParametersType initialParameters( transform->GetNumberOfParameters() );
initialParameters[0] = 0.0; // Initial offset in mm along X
initialParameters[1] = 0.0; // Initial offset in mm along Y
transform->SetParameters( initialParameters );
registration->SetInitialTransform( transform );
registration->InPlaceOn();
metric->SetNumberOfHistogramBins( 24 );
if( argc > 7 )
{
// optionally, override the values with numbers taken from the command line arguments.
metric->SetNumberOfHistogramBins( numberOfBins );
}
// Software Guide : BeginLatex
//
// To set the optimizer parameters, note that \emph{LearningRate}
// and \emph{MinimumStepLength} are set in the obsever at the begining
// of each resolution level. The other optimizer parameters are set
// as follows.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
optimizer->SetNumberOfIterations( 200 );
optimizer->SetRelaxationFactor( 0.5 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer = CommandIterationUpdate::New();
optimizer->AddObserver( itk::IterationEvent(), observer );
// Software Guide : BeginLatex
//
// We set the number of multi-resolution levels to three and set
// the corresponding shrink factor and smoothing sigma values for each
// resolution level. Using smoothing in the subsampled images in
// low-resolution levels can avoid large fluctuations in the
// metric function, which prevents the optimizer from becoming trapped in
// local minima. In this simple example we have no smoothing, and we have
// used small shrinkings for the first two resolution levels.
//
// \index{itk::Image\-Registration\-Methodv4!SetNumberOfLevels()}
// \index{itk::Image\-Registration\-Methodv4!SetShrinkFactorsPerLevel()}
// \index{itk::Image\-Registration\-Methodv4!SetSmoothingSigmasPerLevel()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels = 3;
RegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel;
shrinkFactorsPerLevel.SetSize( 3 );
shrinkFactorsPerLevel[0] = 3;
shrinkFactorsPerLevel[1] = 2;
shrinkFactorsPerLevel[2] = 1;
RegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel;
smoothingSigmasPerLevel.SetSize( 3 );
smoothingSigmasPerLevel[0] = 0;
smoothingSigmasPerLevel[1] = 0;
smoothingSigmasPerLevel[2] = 0;
registration->SetNumberOfLevels ( numberOfLevels );
registration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel );
registration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once all the registration components are in place we can create
// an instance of our interface command and connect it to the
// registration object using the \code{AddObserver()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef RegistrationInterfaceCommand<RegistrationType> CommandType;
CommandType::Pointer command = CommandType::New();
registration->AddObserver( itk::MultiResolutionIterationEvent(), command );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then we trigger the registration process by calling \code{Update()}.
//
// Software Guide : EndLatex
try
{
registration->Update();
std::cout << "Optimizer stop condition: "
<< registration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
ParametersType finalParameters = transform->GetParameters();
double TranslationAlongX = finalParameters[0];
double TranslationAlongY = finalParameters[1];
unsigned int numberOfIterations = optimizer->GetCurrentIteration();
double bestValue = optimizer->GetValue();
// Print out results
//
std::cout << "Result = " << std::endl;
std::cout << " Translation X = " << TranslationAlongX << std::endl;
std::cout << " Translation Y = " << TranslationAlongY << std::endl;
std::cout << " Iterations = " << numberOfIterations << std::endl;
std::cout << " Metric value = " << bestValue << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example using the following images
//
// \begin{itemize}
// \item BrainT1SliceBorder20.png
// \item BrainProtonDensitySliceShifted13x17y.png
// \end{itemize}
//
// The output produced by the execution of the method is
//
// \begin{verbatim}
// 0 -0.316956 [11.4200, 11.2063]
// 1 -0.562048 [18.2938, 25.6545]
// 2 -0.407696 [11.3643, 21.6569]
// 3 -0.5702 [13.7244, 18.4274]
// 4 -0.803252 [11.1634, 15.3547]
//
// 0 -0.697586 [12.8778, 16.3846]
// 1 -0.901984 [13.1794, 18.3617]
// 2 -0.827423 [13.0545, 17.3695]
// 3 -0.92754 [12.8528, 16.3901]
// 4 -0.902671 [12.9426, 16.8819]
// 5 -0.941212 [13.1402, 17.3413]
//
// 0 -0.922239 [13.0364, 17.1138]
// 1 -0.930203 [12.9463, 16.8806]
// 2 -0.930959 [13.0191, 16.9822]
//
//
// Result =
// Translation X = 13.0192
// Translation Y = 16.9823
// Iterations = 4
// Metric value = -0.929237
// \end{verbatim}
//
// These values are a close match to the true misalignment of $(13,17)$
// introduced in the moving image.
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( transform );
resample->SetInput( movingImageReader->GetOutput() );
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( backgroundGrayLevel );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( outImagefile );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
//
// Generate checkerboards before and after registration
//
typedef itk::CheckerBoardImageFilter< FixedImageType > CheckerBoardFilterType;
CheckerBoardFilterType::Pointer checker = CheckerBoardFilterType::New();
checker->SetInput1( fixedImage );
checker->SetInput2( resample->GetOutput() );
caster->SetInput( checker->GetOutput() );
writer->SetInput( caster->GetOutput() );
resample->SetDefaultPixelValue( 0 );
// Before registration
TransformType::Pointer identityTransform = TransformType::New();
identityTransform->SetIdentity();
resample->SetTransform( identityTransform );
for (int q=0; q< argc; ++q)
{
std::cout << q << " " << argv[q] << std::endl;
}
if( checkerBoardBefore != std::string("") )
{
writer->SetFileName( checkerBoardBefore );
writer->Update();
}
// After registration
resample->SetTransform( transform );
if( checkerBoardAfter != std::string("") )
{
writer->SetFileName( checkerBoardAfter );
writer->Update();
}
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MultiResImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{MultiResImageRegistration1CheckerboardBefore}
// \includegraphics[width=0.32\textwidth]{MultiResImageRegistration1CheckerboardAfter}
// \itkcaption[Multi-Resolution registration input images]{Mapped moving image
// (left) and composition of fixed and moving images before (center) and
// after (right) registration.}
// \label{fig:MultiResImageRegistration1Output}
// \end{figure}
//
// The result of resampling the moving image is presented in the left image
// of Figure \ref{fig:MultiResImageRegistration1Output}. The center and
// right images of the figure depict a checkerboard composite of the fixed
// and moving images before and after registration.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[height=0.44\textwidth]{MultiResImageRegistration1TraceTranslations}
// \includegraphics[height=0.44\textwidth]{MultiResImageRegistration1TraceMetric}
// \itkcaption[Multi-Resolution registration output images]{Sequence of
// translations and metric values at each iteration of the optimizer.}
// \label{fig:MultiResImageRegistration1Trace}
// \end{figure}
//
// Figure \ref{fig:MultiResImageRegistration1Trace} (left) shows
// the sequence of translations followed by the optimizer as it searched
// the parameter space. The right side of the same figure shows the
// sequence of metric values computed as the optimizer searched the
// parameter space. From the trace, we can see that with the more
// aggressive optimization parameters we get quite close to the optimal
// value within 5 iterations with the remaining iterations just doing fine
// adjustments. It is interesting to compare these results with those
// of the single resolution example in Section
// \ref{sec:MultiModalityRegistrationMattes}, where 46 iterations were
// required as more conservative optimization parameters had to be used.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|