1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1SliceBorder20.png}
// INPUTS: {BrainProtonDensitySliceR10X13Y17.png}
// OUTPUTS: {MultiStageImageRegistration1Output.png}
// ARGUMENTS: 100
// OUTPUTS: {MultiStageImageRegistration1CheckerboardBefore.png}
// OUTPUTS: {MultiStageImageRegistration1CheckerboardAfter.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of more complex components of the
// registration framework. In particular, it introduces a multistage,
// multi-resolution approach to run a multi-modal registration process
// using two linear \doxygen{TranslationTransform} and \doxygen{AffineTransform}.
// Also, it shows the use of \emph{Scale Estimators}
// for fine-tuning the scale parameters of the optimizer when an Affine
// transform is used. The \doxygen{RegistrationParameterScalesFromPhysicalShift}
// filter is used for automatic estimation of the parameters scales.
//
// \index{itk::ImageRegistrationMethodv4!AffineTransform}
// \index{itk::ImageRegistrationMethodv4!Scaling parameter space}
// \index{itk::AffineTransform!Image Registration}
// \index{itk::ImageRegistrationMethodv4!Multi-Stage}
// \index{itk::ImageRegistrationMethodv4!Multi-Resolution}
// \index{itk::ImageRegistrationMethodv4!Multi-Modality}
//
// To begin the example, we include the headers of the registration
// components we will use.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageRegistrationMethodv4.h"
#include "itkMattesMutualInformationImageToImageMetricv4.h"
#include "itkRegularStepGradientDescentOptimizerv4.h"
#include "itkConjugateGradientLineSearchOptimizerv4.h"
#include "itkTranslationTransform.h"
#include "itkAffineTransform.h"
#include "itkCompositeTransform.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkResampleImageFilter.h"
#include "itkCastImageFilter.h"
#include "itkCheckerBoardImageFilter.h"
#include "itkCommand.h"
// The following section of code implements a Command observer
// that will monitor the configurations of the registration process
// at every change of stage and resolution level.
//
template <typename TRegistration>
class RegistrationInterfaceCommand : public itk::Command
{
public:
typedef RegistrationInterfaceCommand Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
RegistrationInterfaceCommand() {};
public:
typedef TRegistration RegistrationType;
// The Execute function simply calls another version of the \code{Execute()}
// method accepting a \code{const} input object
void Execute( itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) object , event );
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
if( !(itk::MultiResolutionIterationEvent().CheckEvent( &event ) ) )
{
return;
}
std::cout << "\nObserving from class " << object->GetNameOfClass();
if (!object->GetObjectName().empty())
{
std::cout << " \"" << object->GetObjectName() << "\"" << std::endl;
}
const RegistrationType * registration = static_cast<const RegistrationType *>( object );
unsigned int currentLevel = registration->GetCurrentLevel();
typename RegistrationType::ShrinkFactorsPerDimensionContainerType shrinkFactors =
registration->GetShrinkFactorsPerDimension( currentLevel );
typename RegistrationType::SmoothingSigmasArrayType smoothingSigmas =
registration->GetSmoothingSigmasPerLevel();
std::cout << "-------------------------------------" << std::endl;
std::cout << " Current multi-resolution level = " << currentLevel << std::endl;
std::cout << " shrink factor = " << shrinkFactors << std::endl;
std::cout << " smoothing sigma = " << smoothingSigmas[currentLevel] << std::endl;
std::cout << std::endl;
}
};
// The following section of code implements an observer
// that will monitor the evolution of the registration process.
//
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate(): m_CumulativeIterationIndex(0) {};
public:
typedef itk::GradientDescentOptimizerv4Template<double> OptimizerType;
typedef const OptimizerType * OptimizerPointer;
void Execute(itk::Object *caller, const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *)caller, event);
}
void Execute(const itk::Object * object, const itk::EventObject & event) ITK_OVERRIDE
{
OptimizerPointer optimizer = static_cast< OptimizerPointer >( object );
if( !(itk::IterationEvent().CheckEvent( &event )) )
{
return;
}
std::cout << optimizer->GetCurrentIteration() << " ";
std::cout << optimizer->GetValue() << " ";
std::cout << optimizer->GetCurrentPosition() << " " <<
m_CumulativeIterationIndex++ << std::endl;
}
private:
unsigned int m_CumulativeIterationIndex;
};
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " fixedImageFile movingImageFile ";
std::cerr << " outputImagefile [backgroundGrayLevel]";
std::cerr << " [checkerboardbefore] [CheckerBoardAfter]";
std::cerr << " [numberOfBins] " << std::endl;
return EXIT_FAILURE;
}
const unsigned int Dimension = 2;
typedef float PixelType;
typedef itk::Image< PixelType, Dimension > FixedImageType;
typedef itk::Image< PixelType, Dimension > MovingImageType;
// Software Guide : BeginLatex
//
// In a multistage scenario, each stage needs an individual instantiation
// of the \doxygen{ImageRegistrationMethodv4}, so each stage can possibly
// have a different transform, a different optimizer, and a different image
// metric and can be performed in multiple levels.
// The configuration of the registration method at each stage closely
// follows the procedure in the previous section.
//
// In early stages we can use simpler transforms and more aggressive optimization
// parameters to take big steps toward the optimal value. Then, at the final
// stage we can have a more complex transform to do fine adjustments of the final
// parameters.
//
// A possible scheme is to use a simple translation transform for initial
// coarse registration levels and upgrade to an affine transform at the
// finer level.
// Since we have two different types of transforms, we can use a multistage
// registration approach as shown in the current example.
//
// First we need to configure the registration components of the initial stage.
// The instantiation of the transform type requires only the
// dimension of the space and the type used for representing space coordinates.
//
// \index{itk::TranslationTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::TranslationTransform< double, Dimension > TTransformType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of other registration components are defined here.\newline
// \doxygen{RegularStepGradientDescentOptimizerv4} is used as the
// optimizer of the first stage. Also, we use
// \doxygen{MattesMutualInformationImageToImageMetricv4} as the metric
// since it is fitted for a multi-modal registration.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RegularStepGradientDescentOptimizerv4< double > TOptimizerType;
typedef itk::MattesMutualInformationImageToImageMetricv4<
FixedImageType,
MovingImageType > MetricType;
typedef itk::ImageRegistrationMethodv4<
FixedImageType,
MovingImageType,
TTransformType > TRegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, all the components are instantiated using their \code{New()} method
// and connected to the registration object as in previous examples.
//
// Software Guide : EndLatex
TOptimizerType::Pointer transOptimizer = TOptimizerType::New();
MetricType::Pointer transMetric = MetricType::New();
TRegistrationType::Pointer transRegistration = TRegistrationType::New();
transRegistration->SetOptimizer( transOptimizer );
transRegistration->SetMetric( transMetric );
// Software Guide : BeginLatex
//
// The output transform of the registration process will be constructed
// internally in the registration filter since the related \emph{TransformType}
// is already passed to the registration method as a template parameter.
// However, we should provide an initial moving transform for the
// registration method if needed.
//
// \index{itk::TranslationTransform!New()}
// \index{itk::TranslationTransform!Pointer}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TTransformType::Pointer movingInitTx = TTransformType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// After setting the initial parameters, the initial transform can be
// passed to the registration filter by \code{SetMovingInitialTransform()} method.
//
// \index{itk::Image\-Registration\-Methodv4!SetMovingInitialTransform()}
//
// Software Guide : EndLatex
typedef TOptimizerType::ParametersType ParametersType;
ParametersType initialParameters( movingInitTx->GetNumberOfParameters() );
initialParameters[0] = 3.0; // Initial offset in mm along X
initialParameters[1] = 5.0; // Initial offset in mm along Y
movingInitTx->SetParameters( initialParameters );
// Software Guide : BeginCodeSnippet
transRegistration->SetMovingInitialTransform( movingInitTx );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can use a \doxygen{CompositeTransform} to stack all the output
// transforms resulted from multiple stages. This composite
// transform should also hold the moving initial transform (if it exists)
// because as explained in section \ref{sec:RigidRegistrationIn2D},
// the output of each registration stage does not include the input
// initial transform to that stage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CompositeTransform< double,
Dimension > CompositeTransformType;
CompositeTransformType::Pointer compositeTransform =
CompositeTransformType::New();
compositeTransform->AddTransform( movingInitTx );
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< FixedImageType > FixedImageReaderType;
typedef itk::ImageFileReader< MovingImageType > MovingImageReaderType;
FixedImageReaderType::Pointer fixedImageReader = FixedImageReaderType::New();
MovingImageReaderType::Pointer movingImageReader = MovingImageReaderType::New();
fixedImageReader->SetFileName( argv[1] );
movingImageReader->SetFileName( argv[2] );
transRegistration->SetFixedImage( fixedImageReader->GetOutput() );
transRegistration->SetMovingImage( movingImageReader->GetOutput() );
transRegistration->SetObjectName("TranslationRegistration");
// Software Guide : BeginLatex
//
// In the case of this simple example, the first stage is run only
// in one level of registration at a coarse resolution.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels1 = 1;
TRegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel1;
shrinkFactorsPerLevel1.SetSize( numberOfLevels1 );
shrinkFactorsPerLevel1[0] = 3;
TRegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel1;
smoothingSigmasPerLevel1.SetSize( numberOfLevels1 );
smoothingSigmasPerLevel1[0] = 2;
transRegistration->SetNumberOfLevels ( numberOfLevels1 );
transRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel1 );
transRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel1 );
// Software Guide : EndCodeSnippet
transMetric->SetNumberOfHistogramBins( 24 );
if( argc > 7 )
{
// optionally, override the values with numbers taken from the command line arguments.
transMetric->SetNumberOfHistogramBins( atoi( argv[7] ) );
}
transOptimizer->SetNumberOfIterations( 200 );
transOptimizer->SetRelaxationFactor( 0.5 );
// Software Guide : BeginLatex
//
// Also, for this initial stage we can use a more agressive parameter
// set for the optimizer by taking a big step size and relaxing
// stop criteria.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
transOptimizer->SetLearningRate( 16 );
transOptimizer->SetMinimumStepLength( 1.5 );
// Software Guide : EndCodeSnippet
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer1 = CommandIterationUpdate::New();
transOptimizer->AddObserver( itk::IterationEvent(), observer1 );
// Create the Registration interface observer and register it with the registration
// method.
//
typedef RegistrationInterfaceCommand<TRegistrationType> TranslationCommandType;
TranslationCommandType::Pointer command1 = TranslationCommandType::New();
transRegistration->AddObserver( itk::MultiResolutionIterationEvent(), command1 );
// Software Guide : BeginLatex
//
// Once all the registration components are in place, we trigger the registration
// process by calling \code{Update()} and add the result output transform to the final
// composite transform, so this composite transform can be used to initialize the next
// registration stage.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
transRegistration->Update();
std::cout << "Optimizer stop condition: "
<< transRegistration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(
transRegistration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now we can upgrade to an Affine transform as the second stage of registration
// process.
// The AffineTransform is a linear transformation that maps lines into
// lines. It can be used to represent translations, rotations, anisotropic
// scaling, shearing or any combination of them. Details about the affine
// transform can be seen in Section~\ref{sec:AffineTransform}.
// The instantiation of the transform type requires only the dimension of the
// space and the type used for representing space coordinates.
//
// \index{itk::AffineTransform!Instantiation}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::AffineTransform< double, Dimension > ATransformType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We also use a different optimizer in configuration of the second stage while
// the metric is kept the same as before.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ConjugateGradientLineSearchOptimizerv4Template<
double > AOptimizerType;
typedef itk::ImageRegistrationMethodv4<
FixedImageType,
MovingImageType,
ATransformType > ARegistrationType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Again all the components are instantiated using their \code{New()} method
// and connected to the registration object like in previous stages.
//
// Software Guide : EndLatex
AOptimizerType::Pointer affineOptimizer = AOptimizerType::New();
MetricType::Pointer affineMetric = MetricType::New();
ARegistrationType::Pointer affineRegistration = ARegistrationType::New();
affineRegistration->SetOptimizer( affineOptimizer );
affineRegistration->SetMetric( affineMetric );
// Software Guide : BeginLatex
//
// The current stage can be initialized using the initial transform of the
// registration and the result transform of the previous stage, so that both
// are concatenated into the composite transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineRegistration->SetMovingInitialTransform( compositeTransform );
// Software Guide : EndCodeSnippet
affineRegistration->SetFixedImage( fixedImageReader->GetOutput() );
affineRegistration->SetMovingImage( movingImageReader->GetOutput() );
affineRegistration->SetObjectName("AffineRegistration");
affineMetric->SetNumberOfHistogramBins( 24 );
if( argc > 7 )
{
// optionally, override the values with numbers taken from the command line arguments.
affineMetric->SetNumberOfHistogramBins( atoi( argv[7] ) );
}
// Software Guide : BeginLatex
//
// In Section \ref{sec:InitializingRegistrationWithMoments} we showed
// the importance of center of rotation in the registration process.
// In Affine transforms, the center of rotation is defined by the fixed
// parameters set, which are set by default to [0, 0].
// However, consider a situation where the
// origin of the virtual space, in which the registration is run, is far away
// from the zero origin. In such cases, leaving the center of rotation
// as the default value can make the optimization process unstable. Therefore,
// we are always interested to set the center of rotation to the center of virtual
// space which is usually the fixed image space.
//
// Note that either center of gravity or geometrical center can be used
// as the center of rotation. In this example center of rotation is set
// to the geometrical center of the fixed image. We could also use
// \doxygen{ImageMomentsCalculator} filter to compute the center of mass.
//
// Based on the above discussion, the user must set the fixed parameters of
// the registration transform outside of the registraton method, so first
// we instantiate an object of the output transform type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ATransformType::Pointer affineTx = ATransformType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we compute the physical center of the fixed image and set
// that as the center of the output Affine transform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef FixedImageType::SpacingType SpacingType;
typedef FixedImageType::PointType OriginType;
typedef FixedImageType::RegionType RegionType;
typedef FixedImageType::SizeType SizeType;
FixedImageType::Pointer fixedImage = fixedImageReader->GetOutput();
const SpacingType fixedSpacing = fixedImage->GetSpacing();
const OriginType fixedOrigin = fixedImage->GetOrigin();
const RegionType fixedRegion = fixedImage->GetLargestPossibleRegion();
const SizeType fixedSize = fixedRegion.GetSize();
ATransformType::InputPointType centerFixed;
centerFixed[0] =
fixedOrigin[0] + fixedSpacing[0] * fixedSize[0] / 2.0;
centerFixed[1] =
fixedOrigin[1] + fixedSpacing[1] * fixedSize[1] / 2.0;
const unsigned int numberOfFixedParameters =
affineTx->GetFixedParameters().Size();
ATransformType::ParametersType fixedParameters( numberOfFixedParameters );
for (unsigned int i = 0; i < numberOfFixedParameters; ++i)
{
fixedParameters[i] = centerFixed[i];
}
affineTx->SetFixedParameters( fixedParameters );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the initialized output transform should be connected to
// the registration object by using \code{SetInitialTransform()} method.
//
// It is important to distinguish between the \code{SetInitialTransform()}
// and \code{SetMovingInitialTransform()} that was used to initialize the
// registration stage based on the results of the previous stages.
// You can assume that the first one is used for direct manipulation of the
// optimizable transform in current registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineRegistration->SetInitialTransform( affineTx );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The set of optimizable parameters in the Affine transform have different
// dynamic ranges. Typically the parameters associated with the matrix
// have values around $[-1:1]$, although they are not restricted to this
// interval. Parameters associated with translations, on the other hand,
// tend to have much higher values, typically on the order of $10.0$ to
// $100.0$. This difference in dynamic range negatively affects the
// performance of gradient descent optimizers. ITK provides some mechanisms to
// compensate for such differences in values among the parameters when
// they are passed to the optimizer.
//
// The first mechanism consists of providing an
// array of scale factors to the optimizer. These factors re-normalize the
// gradient components before they are used to compute the step of the
// optimizer at the current iteration.
// These scales are estimated by the user intuitively as shown in previous
// examples of this chapter. In our particular case, a common choice
// for the scale parameters is to set all those associated
// with the matrix coefficients to $1.0$, that is, the first $N \times N$
// factors. Then, we set the remaining scale factors to a small value.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Here the affine transform is represented by the matrix $\bf{M}$ and the
// vector $\bf{T}$. The transformation of a point $\bf{P}$ into $\bf{P'}$
// is expressed as
//
// \begin{equation}
// \left[
// \begin{array}{c}
// {P'}_x \\ {P'}_y \\ \end{array}
// \right]
// =
// \left[
// \begin{array}{cc}
// M_{11} & M_{12} \\ M_{21} & M_{22} \\ \end{array}
// \right]
// \cdot
// \left[
// \begin{array}{c}
// P_x \\ P_y \\ \end{array}
// \right]
// +
// \left[
// \begin{array}{c}
// T_x \\ T_y \\ \end{array}
// \right]
// \end{equation}
//
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// Based on the above discussion, we need much smaller scales for translation
// parameters of vector $\bf{T}$ ($T_x$, $T_y$) compared to the parameters
// of matrix $\bf{M}$ ($M_{11}$, $M_{12}$, $M_{21}$, $M_{22}$).
// However, it is not easy to have an intuitive estimation of all parameter
// scales when we have to deal with a large parameter space.
//
// Fortunately, ITKv4 provides a framework for automated parameter scaling.
// \doxygen{RegistrationParameterScalesEstimator} vastly reduces the
// difficulty of tuning parameters for different transform/metric combinations.
// Parameter scales are estimated by analyzing the result of a small parameter
// update on the change in the magnitude of physical space deformation induced
// by the transformation.
//
// The impact from a unit change of a parameter may be defined in multiple ways,
// such as the maximum shift of voxels in index or physical space, or the average
// norm of transform Jacobian.
// Filters \doxygen{RegistrationParameterScalesFromPhysicalShift}
// and \doxygen{RegistrationParameterScalesFromIndexShift} use the first definition
// to estimate the scales, while the \doxygen{RegistrationParameterScalesFromJacobian}
// filter estimates scales based on the later definition.
// In all methods, the goal is to rescale the transform parameters such that
// a unit change of each \emph{scaled parameter} will have the same impact on deformation.
//
// In this example the first filter is chosen to estimate the parameter scales. The
// scales estimator will then be passed to optimizer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::RegistrationParameterScalesFromPhysicalShift<
MetricType> ScalesEstimatorType;
ScalesEstimatorType::Pointer scalesEstimator =
ScalesEstimatorType::New();
scalesEstimator->SetMetric( affineMetric );
scalesEstimator->SetTransformForward( true );
affineOptimizer->SetScalesEstimator( scalesEstimator );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The step length has to be proportional to the expected values of the
// parameters in the search space. Since the expected values of the matrix
// coefficients are around $1.0$, the initial step of the optimization
// should be a small number compared to $1.0$. As a guideline, it is
// useful to think of the matrix coefficients as combinations of
// $cos(\theta)$ and $sin(\theta)$. This leads to use values close to the
// expected rotation measured in radians. For example, a rotation of $1.0$
// degree is about $0.017$ radians.
//
// However, we need not worry about the above considerations.
// Thanks to the \emph{ScalesEstimator}, the initial step size can also be
// estimated automatically, either at each iteration or only at the first
// iteration. In this example we choose to estimate learning rate
// once at the begining of the registration process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
affineOptimizer->SetDoEstimateLearningRateOnce( true );
affineOptimizer->SetDoEstimateLearningRateAtEachIteration( false );
// Software Guide : EndCodeSnippet
// Set the other parameters of optimizer
//
affineOptimizer->SetLowerLimit( 0 );
affineOptimizer->SetUpperLimit( 2 );
affineOptimizer->SetEpsilon( 0.2 );
affineOptimizer->SetNumberOfIterations( 200 );
affineOptimizer->SetMinimumConvergenceValue( 1e-6 );
affineOptimizer->SetConvergenceWindowSize( 5 );
// Create the Command observer and register it with the optimizer.
//
CommandIterationUpdate::Pointer observer2 = CommandIterationUpdate::New();
affineOptimizer->AddObserver( itk::IterationEvent(), observer2 );
// Software Guide : BeginLatex
//
// At the second stage, we run two levels of registration, where the second
// level is run in full resolution in which we do the final adjustments
// of the output parameters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int numberOfLevels2 = 2;
ARegistrationType::ShrinkFactorsArrayType shrinkFactorsPerLevel2;
shrinkFactorsPerLevel2.SetSize( numberOfLevels2 );
shrinkFactorsPerLevel2[0] = 2;
shrinkFactorsPerLevel2[1] = 1;
ARegistrationType::SmoothingSigmasArrayType smoothingSigmasPerLevel2;
smoothingSigmasPerLevel2.SetSize( numberOfLevels2 );
smoothingSigmasPerLevel2[0] = 1;
smoothingSigmasPerLevel2[1] = 0;
affineRegistration->SetNumberOfLevels ( numberOfLevels2 );
affineRegistration->SetShrinkFactorsPerLevel( shrinkFactorsPerLevel2 );
affineRegistration->SetSmoothingSigmasPerLevel( smoothingSigmasPerLevel2 );
// Software Guide : EndCodeSnippet
// Create the Registration interface observer and register it with the registration
// object.
//
typedef RegistrationInterfaceCommand<ARegistrationType> AffineCommandType;
AffineCommandType::Pointer command2 = AffineCommandType::New();
affineRegistration->AddObserver( itk::MultiResolutionIterationEvent(), command2 );
// Software Guide : BeginLatex
//
// Finally we trigger the registration process by calling \code{Update()} and
// add the output transform of the last stage to the
// composite transform. This composite transform will be considered as
// the final transform of this multistage registration process and will be
// used by the resampler to resample the moving image in to the virtual domain
// space (fixed image space if there is no fixed initial transform).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
affineRegistration->Update();
std::cout << "Optimizer stop condition: "
<< affineRegistration->GetOptimizer()->GetStopConditionDescription()
<< std::endl;
}
catch( itk::ExceptionObject & err )
{
std::cout << "ExceptionObject caught !" << std::endl;
std::cout << err << std::endl;
return EXIT_FAILURE;
}
compositeTransform->AddTransform(
affineRegistration->GetModifiableTransform() );
// Software Guide : EndCodeSnippet
std::cout << "\nInitial parameters of the registration process: " << std::endl
<< movingInitTx->GetParameters() << std::endl;
std::cout << "\nTranslation parameters after registration: " << std::endl
<< transOptimizer->GetCurrentPosition() << std::endl
<< " Last LearningRate: " << transOptimizer->GetCurrentStepLength() << std::endl;
std::cout << "\nAffine parameters after registration: " << std::endl
<< affineOptimizer->GetCurrentPosition() << std::endl
<< " Last LearningRate: " << affineOptimizer->GetLearningRate() << std::endl;
// Software Guide : BeginLatex
//
// Let's execute this example using the following multi-modality images:
//
// \begin{itemize}
// \item BrainT1SliceBorder20.png
// \item BrainProtonDensitySliceR10X13Y17.png
// \end{itemize}
//
// The second image is the result of intentionally rotating the first
// image by $10$ degrees and then translating by $(-13,-17)$. Both images
// have unit-spacing and are shown in Figure
// \ref{fig:FixedMovingMultiStageImageRegistration1}.
//
// The registration converges after $5$ iterations in the translation stage.
// Also, in the second stage, the registration converges after $46$ iterations
// in the first level, and $6$ iterations in the second level.
// The final results when printed as an array of parameters are:
//
// \begin{verbatim}
// Initial parameters of the registration process:
// [3, 5]
//
// Translation parameters after first registration stage:
// [9.0346, 10.8303]
//
// Affine parameters after second registration stage:
// [0.9864, -0.1733, 0.1738, 0.9863, 0.9693, 0.1482]
// \end{verbatim}
//
// As it can be seen, the translation parameters after the first stage
// compensate most of the offset between the fixed and moving images.
// When the images are close to each other, the affine registration is
// run for the rotation and the final match.
// By reordering the Affine array of parameters as coefficients of matrix
// $\bf{M}$ and vector $\bf{T}$ they can now be seen as
//
// \begin{equation}
// M =
// \left[
// \begin{array}{cc}
// 0.9864 & -0.1733 \\ 0.1738 & 0.9863 \\ \end{array}
// \right]
// \mbox{ and }
// T =
// \left[
// \begin{array}{c}
// 0.9693 \\ 0.1482 \\ \end{array}
// \right]
// \end{equation}
//
// In this form, it is easier to interpret the effect of the
// transform. The matrix $\bf{M}$ is responsible for scaling, rotation and
// shearing while $\bf{T}$ is responsible for translations.
//
// The second component of the matrix values is usually associated with
// $\sin{\theta}$. We obtain the rotation through SVD of the affine
// matrix. The value is $9.975$ degrees, which is approximately the
// intentional misalignment of $10.0$ degrees.
//
// Also, let's compute the total translation values resulting from initial transform,
// translation transform, and the Affine transform together.
//
// In $X$ direction:
// \begin{equation}
// 3 + 9.0346 + 0.9693 = 13.0036
// \end{equation}
// In $Y$ direction:
// \begin{equation}
// 5 + 10.8303 + 0.1482 = 15.9785
// \end{equation}
//
// It can be seen that the translation values closely match the true
// misalignment introduced in the moving image.
//
// It is important to note that once the images are registered at a
// sub-pixel level, any further improvement of the registration relies
// heavily on the quality of the interpolator. It may then be reasonable to
// use a coarse and fast interpolator in the lower resolution levels and
// switch to a high-quality but slow interpolator in the final resolution
// level. However, in this example we used a linear interpolator for all
// stages and different registration levels since it is so fast.
//
// \begin{figure}
// \center
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceBorder20}
// \includegraphics[width=0.44\textwidth]{BrainProtonDensitySliceR10X13Y17}
// \itkcaption[AffineTransform registration]{Fixed and moving images
// provided as input to the registration method using the AffineTransform.}
// \label{fig:FixedMovingMultiStageImageRegistration1}
// \end{figure}
//
// Software Guide : EndLatex
typedef itk::ResampleImageFilter<
MovingImageType,
FixedImageType > ResampleFilterType;
ResampleFilterType::Pointer resample = ResampleFilterType::New();
resample->SetTransform( compositeTransform );
resample->SetInput( movingImageReader->GetOutput() );
PixelType backgroundGrayLevel = 100;
if( argc > 4 )
{
backgroundGrayLevel = atoi( argv[4] );
}
resample->SetSize( fixedImage->GetLargestPossibleRegion().GetSize() );
resample->SetOutputOrigin( fixedImage->GetOrigin() );
resample->SetOutputSpacing( fixedImage->GetSpacing() );
resample->SetOutputDirection( fixedImage->GetDirection() );
resample->SetDefaultPixelValue( backgroundGrayLevel );
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter<
FixedImageType,
OutputImageType > CastFilterType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
CastFilterType::Pointer caster = CastFilterType::New();
writer->SetFileName( argv[3] );
caster->SetInput( resample->GetOutput() );
writer->SetInput( caster->GetOutput() );
writer->Update();
// Software Guide : BeginLatex
//
// \begin{figure}
// \center
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1Output}
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1CheckerboardBefore}
// \includegraphics[width=0.32\textwidth]{MultiStageImageRegistration1CheckerboardAfter}
// \itkcaption[Multistage registration input images]{Mapped moving image
// (left) and composition of fixed and moving images before (center) and
// after (right) registration.}
// \label{fig:MultiStageImageRegistration1Outputs}
// \end{figure}
//
// The result of resampling the moving image is presented in the left image
// of Figure \ref{fig:MultiStageImageRegistration1Outputs}. The center and
// right images of the figure depict a checkerboard composite of the fixed
// and moving images before and after registration.
//
// Software Guide : EndLatex
//
// Generate checkerboards before and after registration
//
typedef itk::CheckerBoardImageFilter< FixedImageType > CheckerBoardFilterType;
CheckerBoardFilterType::Pointer checker = CheckerBoardFilterType::New();
checker->SetInput1( fixedImage );
checker->SetInput2( resample->GetOutput() );
caster->SetInput( checker->GetOutput() );
writer->SetInput( caster->GetOutput() );
resample->SetDefaultPixelValue( 0 );
// Write out checkerboard outputs
// Before registration
typedef itk::IdentityTransform< double, Dimension > TransformType;
TransformType::Pointer identityTransform;
try
{
identityTransform = TransformType::New();
}
catch( itk::ExceptionObject & err )
{
err.Print(std::cerr);
return EXIT_FAILURE;
}
identityTransform->SetIdentity();
resample->SetTransform( identityTransform );
if( argc > 5 )
{
writer->SetFileName( argv[5] );
writer->Update();
}
// After registration
resample->SetTransform( compositeTransform );
if( argc > 6 )
{
writer->SetFileName( argv[6] );
writer->Update();
}
return EXIT_SUCCESS;
}
|