1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConfidenceConnectedOutput1.png}
// ARGUMENTS: 60 116
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConfidenceConnectedOutput2.png}
// ARGUMENTS: 81 112
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ConfidenceConnectedOutput3.png}
// ARGUMENTS: 107 69
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// \index{itk::FloodFillIterator!In Region Growing}
// \index{itk::ConfidenceConnectedImageFilter}
// \index{itk::ConfidenceConnectedImageFilter!header}
//
// The following example illustrates the use of the
// \doxygen{ConfidenceConnectedImageFilter}. The criterion used by the
// ConfidenceConnectedImageFilter is based on simple statistics of the
// current region. First, the algorithm computes the mean and standard
// deviation of intensity values for all the pixels currently included in the
// region. A user-provided factor is used to multiply the standard deviation
// and define a range around the mean. Neighbor pixels whose intensity values
// fall inside the range are accepted and included in the region. When no
// more neighbor pixels are found that satisfy the criterion, the algorithm
// is considered to have finished its first iteration. At that point, the
// mean and standard deviation of the intensity levels are recomputed using
// all the pixels currently included in the region. This mean and standard
// deviation defines a new intensity range that is used to visit current
// region neighbors and evaluate whether their intensity falls inside the
// range. This iterative process is repeated until no more pixels are added
// or the maximum number of iterations is reached. The following equation
// illustrates the inclusion criterion used by this filter,
//
// \begin{equation}
// I(\mathbf{X}) \in [ m - f \sigma , m + f \sigma ]
// \end{equation}
//
// where $m$ and $\sigma$ are the mean and standard deviation of the region
// intensities, $f$ is a factor defined by the user, $I()$ is the image and
// $\mathbf{X}$ is the position of the particular neighbor pixel being
// considered for inclusion in the region.
//
// Let's look at the minimal code required to use this algorithm. First, the
// following header defining the \doxygen{ConfidenceConnectedImageFilter} class
// must be included.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkConfidenceConnectedImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkCastImageFilter.h"
// Software Guide : BeginLatex
//
// Noise present in the image can reduce the capacity of this filter to grow
// large regions. When faced with noisy images, it is usually convenient to
// pre-process the image by using an edge-preserving smoothing filter. Any of
// the filters discussed in Section~\ref{sec:EdgePreservingSmoothingFilters}
// can be used to this end. In this particular example we use the
// \doxygen{CurvatureFlowImageFilter}, hence we need to include its header
// file.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCurvatureFlowImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
int main( int argc, char *argv[] )
{
if( argc < 5 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage seedX seedY " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We now define the image type using a pixel type and a particular
// dimension. In this case the \code{float} type is used for the pixels due
// to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::CastImageFilter< InternalImageType, OutputImageType >
CastingFilterType;
CastingFilterType::Pointer caster = CastingFilterType::New();
// We instantiate reader and writer types
//
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// The smoothing filter type is instantiated using the image type as
// a template parameter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CurvatureFlowImageFilter< InternalImageType, InternalImageType >
CurvatureFlowImageFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CurvatureFlowImageFilterType::Pointer smoothing =
CurvatureFlowImageFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the region growing filter. In this case it is
// the \code{ConfidenceConnectedImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ConfidenceConnectedImageFilter<
InternalImageType, InternalImageType> ConnectedFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ConnectedFilterType::Pointer confidenceConnected
= ConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now it is time to create a simple, linear pipeline. A file reader is
// added at the beginning of the pipeline and a cast filter and writer are
// added at the end. The cast filter is required here to convert
// \code{float} pixel types to integer types since only a few image file
// formats support \code{float} types.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput( reader->GetOutput() );
confidenceConnected->SetInput( smoothing->GetOutput() );
caster->SetInput( confidenceConnected->GetOutput() );
writer->SetInput( caster->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{CurvatureFlowImageFilter} requires two parameters. The
// following are typical values for $2D$ images. However they may have to
// be adjusted depending on the amount of noise present in the input
// image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetNumberOfIterations( 5 );
smoothing->SetTimeStep( 0.125 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{ConfidenceConnectedImageFilter} also requires two parameters.
// First, the factor $f$ defines how large the range of
// intensities will be. Small values of the multiplier will restrict the
// inclusion of pixels to those having very similar intensities to those
// in the current region. Larger values of the multiplier will relax the
// accepting condition and will result in more generous growth of the
// region. Values that are too large will cause the region to grow into
// neighboring regions which may belong to separate anatomical
// structures. This is not desirable behavior.
//
// \index{itk::ConfidenceConnectedImageFilter!SetMultiplier()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetMultiplier( 2.5 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The number of iterations is specified based on the homogeneity of the
// intensities of the anatomical structure to be segmented. Highly
// homogeneous regions may only require a couple of iterations. Regions
// with ramp effects, like MRI images with inhomogeneous fields, may
// require more iterations. In practice, it seems to be more important to
// carefully select the multiplier factor than the number of iterations.
// However, keep in mind that there is no guarantee that this
// algorithm will converge on a stable region. It is possible that by
// letting the algorithm run for more iterations the region will end up
// engulfing the entire image.
//
// \index{itk::ConfidenceConnectedImageFilter!SetNumberOfIterations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetNumberOfIterations( 5 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this filter is a binary image with zero-value pixels
// everywhere except on the extracted region. The intensity value to be
// set inside the region is selected with the method
// \code{SetReplaceValue()}.
//
// \index{itk::ConfidenceConnectedImageFilter!SetReplaceValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetReplaceValue( 255 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The initialization of the algorithm requires the user to provide a seed
// point. It is convenient to select this point to be placed in a
// \emph{typical} region of the anatomical structure to be segmented. A
// small neighborhood around the seed point will be used to compute the
// initial mean and standard deviation for the inclusion criterion. The
// seed is passed in the form of an \doxygen{Index} to the \code{SetSeed()}
// method.
//
// \index{itk::ConfidenceConnectedImageFilter!SetSeed()}
// \index{itk::ConfidenceConnectedImageFilter!SetInitialNeighborhoodRadius()}
//
// Software Guide : EndLatex
InternalImageType::IndexType index;
index[0] = atoi( argv[3] );
index[1] = atoi( argv[4] );
// Software Guide : BeginCodeSnippet
confidenceConnected->SetSeed( index );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The size of the initial neighborhood around the seed is defined with the
// method \code{SetInitialNeighborhoodRadius()}. The neighborhood will be
// defined as an $N$-dimensional rectangular region with $2r+1$ pixels on
// the side, where $r$ is the value passed as initial neighborhood radius.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetInitialNeighborhoodRadius( 2 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is recommended to place update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Let's now run this example using as input the image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations. For example
//
// \begin{center}
// \begin{tabular}{|l|c|c|}
// \hline
// Structure & Seed Index & Output Image \\ \hline
// White matter & $(60,116)$ & Second from left in Figure \ref{fig:ConfidenceConnectedOutput} \\ \hline
// Ventricle & $(81,112)$ & Third from left in Figure \ref{fig:ConfidenceConnectedOutput} \\ \hline
// Gray matter & $(107,69)$ & Fourth from left in Figure \ref{fig:ConfidenceConnectedOutput} \\ \hline
// \end{tabular}
// \end{center}
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.24\textwidth]{ConfidenceConnectedOutput1}
// \includegraphics[width=0.24\textwidth]{ConfidenceConnectedOutput2}
// \includegraphics[width=0.24\textwidth]{ConfidenceConnectedOutput3}
// \itkcaption[ConfidenceConnected segmentation results]{Segmentation results
// for the ConfidenceConnected filter for various seed points.}
// \label{fig:ConfidenceConnectedOutput}
// \end{figure}
//
// Note that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the region growing methods when the
// anatomical structures to be segmented do not have a homogeneous
// statistical distribution over the image space. You may want to
// experiment with different numbers of iterations to verify how the
// accepted region will extend.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|