1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput5.png}
// ARGUMENTS: 81 114 1.0 -0.5 3.0 100 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput6.png}
// ARGUMENTS: 99 114 1.0 -0.5 3.0 100 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput7.png}
// ARGUMENTS: 56 92 1.0 -0.3 2.0 200 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {FastMarchingImageFilterOutput8.png}
// ARGUMENTS: 40 90 0.5 -0.3 2.0 200 100
// OUTPUTS: {FastMarchingFilterOutput1.png}
// OUTPUTS: {FastMarchingFilterOutput2.png}
// OUTPUTS: {FastMarchingFilterOutput3.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// When the differential equation governing the level set evolution has
// a very simple form, a fast evolution algorithm called fast marching
// can be used.
//
// The following example illustrates the use of the
// \doxygen{FastMarchingImageFilter}. This filter implements a fast marching
// solution to a simple level set evolution problem. In this example, the
// speed term used in the differential equation is expected to be provided by
// the user in the form of an image. This image is typically computed as a
// function of the gradient magnitude. Several mappings are popular in the
// literature, for example, the negative exponential $exp(-x)$ and the
// reciprocal $1/(1+x)$. In the current example we decided to use a Sigmoid
// function since it offers a good number of control parameters that can be
// customized to shape a nice speed image.
//
// The mapping should be done in such a way that the propagation speed of the
// front will be very low close to high image gradients while it will move
// rather fast in low gradient areas. This arrangement will make the contour
// propagate until it reaches the edges of anatomical structures in the image
// and then slow down in front of those edges. The output of the
// FastMarchingImageFilter is a \emph{time-crossing map} that
// indicates, for each pixel, how much time it would take for the front to
// arrive at the pixel location.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{FastMarchingCollaborationDiagram1}
// \itkcaption[FastMarchingImageFilter collaboration diagram]{Collaboration
// diagram of the FastMarchingImageFilter applied to a segmentation task.}
// \label{fig:FastMarchingCollaborationDiagram}
// \end{figure}
//
// The application of a threshold in the output image is then equivalent to
// taking a snapshot of the contour at a particular time during its evolution.
// It is expected that the contour will take a longer time to cross over
// the edges of a particular anatomical structure. This should result in large
// changes on the time-crossing map values close to the structure edges.
// Segmentation is performed with this filter by locating a time range in which
// the contour was contained for a long time in a region of the image space.
//
// Figure~\ref{fig:FastMarchingCollaborationDiagram} shows the major components
// involved in the application of the FastMarchingImageFilter to a
// segmentation task. It involves an initial stage of smoothing using the
// \doxygen{CurvatureAnisotropicDiffusionImageFilter}. The smoothed image is
// passed as the input to the
// \doxygen{GradientMagnitudeRecursiveGaussianImageFilter} and then to the
// \doxygen{SigmoidImageFilter}. Finally, the output of the
// FastMarchingImageFilter is passed to a
// \doxygen{BinaryThresholdImageFilter} in order to produce a binary mask
// representing the segmented object.
//
// The code in the following example illustrates the typical setup of a
// pipeline for performing segmentation with fast marching. First, the input
// image is smoothed using an edge-preserving filter. Then the magnitude of its
// gradient is computed and passed to a sigmoid filter. The result of the
// sigmoid filter is the image potential that will be used to affect the speed
// term of the differential equation.
//
// Let's start by including the following headers. First we include the header
// of the CurvatureAnisotropicDiffusionImageFilter that will be used
// for removing noise from the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCurvatureAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The headers of the GradientMagnitudeRecursiveGaussianImageFilter and
// SigmoidImageFilter are included below. Together, these two filters will
// produce the image potential for regulating the speed term in the
// differential equation describing the evolution of the level set.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkSigmoidImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Of course, we will need the \doxygen{Image} class and the
// FastMarchingImageFilter class. Hence we include their headers.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkFastMarchingImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The time-crossing map resulting from the FastMarchingImageFilter
// will be thresholded using the BinaryThresholdImageFilter. We
// include its header here.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkBinaryThresholdImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Reading and writing images will be done with the \doxygen{ImageFileReader}
// and \doxygen{ImageFileWriter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
// Software Guide : EndCodeSnippet
// The \doxygen{RescaleIntensityImageFilter} is used to renormailize the
// output of filters before sending them to files.
//
#include "itkRescaleIntensityImageFilter.h"
static void PrintCommandLineUsage( const int argc, const char * const argv[] )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage seedX seedY";
std::cerr << " Sigma SigmoidAlpha SigmoidBeta TimeThreshold StoppingValue";
std::cerr << " smoothingOutputImage gradientMagnitudeOutputImage sigmoidOutputImage" << std::endl;
for (int qq=0; qq< argc; ++qq)
{
std::cout << "argv[" << qq << "] = " << argv[qq] << std::endl;
}
}
int main( int argc, char *argv[] )
{
if (argc != 13)
{
PrintCommandLineUsage(argc, argv);
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We now define the image type using a pixel type and a particular
// dimension. In this case the \code{float} type is used for the pixels due
// to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image, on the other hand, is declared to be binary.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The type of the BinaryThresholdImageFilter filter is
// instantiated below using the internal image type and the output image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::BinaryThresholdImageFilter< InternalImageType,
OutputImageType > ThresholdingFilterType;
ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The upper threshold passed to the BinaryThresholdImageFilter
// will define the time snapshot that we are taking from the time-crossing
// map. In an ideal application the user should be able to select this
// threshold interactively using visual feedback. Here, since it is a
// minimal example, the value is taken from the command line arguments.
//
// Software Guide : EndLatex
const InternalPixelType timeThreshold = atof( argv[8] );
// Software Guide : BeginCodeSnippet
thresholder->SetLowerThreshold( 0.0 );
thresholder->SetUpperThreshold( timeThreshold );
thresholder->SetOutsideValue( 0 );
thresholder->SetInsideValue( 255 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We instantiate reader and writer types in the following lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
// Software Guide : EndCodeSnippet
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// The RescaleIntensityImageFilter type is declared below. This filter will
// renormalize image before sending them to writers.
//
typedef itk::RescaleIntensityImageFilter<
InternalImageType,
OutputImageType > CastFilterType;
// Software Guide : BeginLatex
//
// The CurvatureAnisotropicDiffusionImageFilter type is
// instantiated using the internal image type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InternalImageType,
InternalImageType > SmoothingFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, the filter is created by invoking the \code{New()} method and
// assigning the result to a \doxygen{SmartPointer}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The types of the
// GradientMagnitudeRecursiveGaussianImageFilter and
// SigmoidImageFilter are instantiated using the internal image
// type.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GradientFilterType;
typedef itk::SigmoidImageFilter<
InternalImageType,
InternalImageType > SigmoidFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The corresponding filter objects are instantiated with the
// \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
GradientFilterType::Pointer gradientMagnitude = GradientFilterType::New();
SigmoidFilterType::Pointer sigmoid = SigmoidFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The minimum and maximum values of the SigmoidImageFilter output are
// defined with the methods \code{SetOutputMinimum()} and
// \code{SetOutputMaximum()}. In our case, we want these two values to be
// $0.0$ and $1.0$ respectively in order to get a nice speed image to feed
// to the FastMarchingImageFilter. Additional details on the use of
// the SigmoidImageFilter are presented in
// Section~\ref{sec:IntensityNonLinearMapping}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
sigmoid->SetOutputMinimum( 0.0 );
sigmoid->SetOutputMaximum( 1.0 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now declare the type of the FastMarchingImageFilter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::FastMarchingImageFilter< InternalImageType,
InternalImageType > FastMarchingFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
FastMarchingFilterType::Pointer fastMarching
= FastMarchingFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are now connected in a pipeline shown in
// Figure~\ref{fig:FastMarchingCollaborationDiagram} using the following
// lines.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetInput( reader->GetOutput() );
gradientMagnitude->SetInput( smoothing->GetOutput() );
sigmoid->SetInput( gradientMagnitude->GetOutput() );
fastMarching->SetInput( sigmoid->GetOutput() );
thresholder->SetInput( fastMarching->GetOutput() );
writer->SetInput( thresholder->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The CurvatureAnisotropicDiffusionImageFilter class requires a couple
// of parameters to be defined. The following are typical values for $2D$
// images. However they may have to be adjusted depending on the amount of
// noise present in the input image. This filter has been discussed in
// Section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
smoothing->SetTimeStep( 0.125 );
smoothing->SetNumberOfIterations( 5 );
smoothing->SetConductanceParameter( 9.0 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The GradientMagnitudeRecursiveGaussianImageFilter performs the
// equivalent of a convolution with a Gaussian kernel followed by a
// derivative operator. The sigma of this Gaussian can be used to control
// the range of influence of the image edges. This filter has been discussed
// in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}.
//
// \index{itk::Gradient\-Magnitude\-Recursive\-Gaussian\-Image\-Filter!SetSigma()}
//
// Software Guide : EndLatex
const double sigma = atof( argv[5] );
// Software Guide : BeginCodeSnippet
gradientMagnitude->SetSigma( sigma );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The SigmoidImageFilter class requires two parameters to define the linear
// transformation to be applied to the sigmoid argument. These parameters
// are passed using the \code{SetAlpha()} and \code{SetBeta()} methods. In
// the context of this example, the parameters are used to intensify the
// differences between regions of low and high values in the speed image. In
// an ideal case, the speed value should be $1.0$ in the homogeneous regions
// of anatomical structures and the value should decay rapidly to $0.0$
// around the edges of structures. The heuristic for finding the values is
// the following: From the gradient magnitude image, let's call $K1$ the
// minimum value along the contour of the anatomical structure to be
// segmented. Then, let's call $K2$ an average value of the gradient
// magnitude in the middle of the structure. These two values indicate the
// dynamic range that we want to map to the interval $[0:1]$ in the speed
// image. We want the sigmoid to map $K1$ to $0.0$ and $K2$ to $1.0$. Given
// that $K1$ is expected to be higher than $K2$ and we want to map those
// values to $0.0$ and $1.0$ respectively, we want to select a negative
// value for alpha so that the sigmoid function will also do an inverse
// intensity mapping. This mapping will produce a speed image such that the
// level set will march rapidly on the homogeneous region and will
// definitely stop on the contour. The suggested value for beta is
// $(K1+K2)/2$ while the suggested value for alpha is $(K2-K1)/6$, which
// must be a negative number. In our simple example the values are provided
// by the user from the command line arguments. The user can estimate these
// values by observing the gradient magnitude image.
//
// Software Guide : EndLatex
const double alpha = atof( argv[6] );
const double beta = atof( argv[7] );
// Software Guide : BeginCodeSnippet
sigmoid->SetAlpha( alpha );
sigmoid->SetBeta( beta );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The FastMarchingImageFilter requires the user to provide a seed point
// from which the contour will expand. The user can actually pass not only
// one seed point but a set of them. A good set of seed points increases
// the chances of segmenting a complex object without missing parts. The
// use of multiple seeds also helps to reduce the amount of time needed by
// the front to visit a whole object and hence reduces the risk of leaks
// on the edges of regions visited earlier. For example, when segmenting
// an elongated object, it is undesirable to place a single seed at one
// extreme of the object since the front will need a long time to
// propagate to the other end of the object. Placing several seeds along
// the axis of the object will probably be the best strategy to ensure
// that the entire object is captured early in the expansion of the
// front. One of the important properties of level sets is their natural
// ability to fuse several fronts implicitly without any extra
// bookkeeping. The use of multiple seeds takes good advantage of this
// property.
//
// \index{itk::FastMarchingImageFilter!Multiple seeds}
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
// \index{itk::FastMarchingImageFilter!Nodes}
// \index{itk::FastMarchingImageFilter!NodeContainer}
// \index{itk::FastMarchingImageFilter!NodeType}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();
// Software Guide : EndCodeSnippet
InternalImageType::IndexType seedPosition;
seedPosition[0] = atoi( argv[3] );
seedPosition[1] = atoi( argv[4] );
// Software Guide : BeginLatex
//
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position.
//
// \index{itk::FastMarchingImageFilter!Seed initialization}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
NodeType node;
const double seedValue = 0.0;
node.SetValue( seedValue );
node.SetIndex( seedPosition );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
seeds->Initialize();
seeds->InsertElement( 0, node );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The set of seed nodes is now passed to the FastMarchingImageFilter with
// the method \code{SetTrialPoints()}.
//
// \index{itk::FastMarchingImageFilter!SetTrialPoints()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fastMarching->SetTrialPoints( seeds );
// Software Guide : EndCodeSnippet
// Here we configure all the writers required to see the intermediate
// outputs of the pipeline. This is added here to provide
// the necessary images for generating the ITKSoftwareGuide.
// These intermediate outputs are normally not required. Only the output
// of the final thresholding filter should be relevant. Observing
// intermediate output is helpful in the process of fine tuning the
// parameters of filters in the pipeline.
//
try
{
CastFilterType::Pointer caster1 = CastFilterType::New();
WriterType::Pointer writer1 = WriterType::New();
caster1->SetInput( smoothing->GetOutput() );
writer1->SetInput( caster1->GetOutput() );
writer1->SetFileName(argv[10]);
caster1->SetOutputMinimum( 0 );
caster1->SetOutputMaximum( 255 );
writer1->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
try
{
CastFilterType::Pointer caster2 = CastFilterType::New();
WriterType::Pointer writer2 = WriterType::New();
caster2->SetInput( gradientMagnitude->GetOutput() );
writer2->SetInput( caster2->GetOutput() );
writer2->SetFileName(argv[11]);
caster2->SetOutputMinimum( 0 );
caster2->SetOutputMaximum( 255 );
writer2->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
try
{
CastFilterType::Pointer caster3 = CastFilterType::New();
WriterType::Pointer writer3 = WriterType::New();
caster3->SetInput( sigmoid->GetOutput() );
writer3->SetInput( caster3->GetOutput() );
writer3->SetFileName(argv[12]);
caster3->SetOutputMinimum( 0 );
caster3->SetOutputMaximum( 255 );
writer3->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The FastMarchingImageFilter requires the user to specify the
// size of the image to be produced as output. This is done using the
// \code{SetOutputSize()} method. Note that the size is obtained here from the
// output image of the smoothing filter. The size of this image is valid
// only after the \code{Update()} method of this filter has been called
// directly or indirectly.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
fastMarching->SetOutputSize(
reader->GetOutput()->GetBufferedRegion().GetSize() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the front representing the contour will propagate continuously
// over time, it is desirable to stop the process once a certain time has
// been reached. This allows us to save computation time under the
// assumption that the region of interest has already been computed. The
// value for stopping the process is defined with the method
// \code{SetStoppingValue()}. In principle, the stopping value should be a
// little bit higher than the threshold value.
//
// \index{itk::FastMarchingImageFilter!SetStoppingValue()}
//
// Software Guide : EndLatex
const double stoppingTime = atof( argv[9] );
// Software Guide : BeginCodeSnippet
fastMarching->SetStoppingValue( stoppingTime );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block should any errors occur or exceptions be thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
try
{
CastFilterType::Pointer caster4 = CastFilterType::New();
WriterType::Pointer writer4 = WriterType::New();
caster4->SetInput( fastMarching->GetOutput() );
writer4->SetInput( caster4->GetOutput() );
writer4->SetFileName("FastMarchingFilterOutput4.png");
caster4->SetOutputMinimum( 0 );
caster4->SetOutputMaximum( 255 );
writer4->Update();
}
catch( itk::ExceptionObject & err )
{
std::cerr << "ExceptionObject caught !" << std::endl;
std::cerr << err << std::endl;
return EXIT_FAILURE;
}
// The following writer type is used to save the output of the
// time-crossing map in a file with appropiate pixel representation. The
// advantage of saving this image in native format is that it can be used
// with a viewer to help determine an appropriate threshold to be used on
// the output of the \code{fastmarching} filter.
//
typedef itk::ImageFileWriter< InternalImageType > InternalWriterType;
InternalWriterType::Pointer mapWriter = InternalWriterType::New();
mapWriter->SetInput( fastMarching->GetOutput() );
mapWriter->SetFileName("FastMarchingFilterOutput4.mha");
mapWriter->Update();
InternalWriterType::Pointer speedWriter = InternalWriterType::New();
speedWriter->SetInput( sigmoid->GetOutput() );
speedWriter->SetFileName("FastMarchingFilterOutput3.mha");
speedWriter->Update();
InternalWriterType::Pointer gradientWriter = InternalWriterType::New();
gradientWriter->SetInput( gradientMagnitude->GetOutput() );
gradientWriter->SetFileName("FastMarchingFilterOutput2.mha");
gradientWriter->Update();
// Software Guide : BeginLatex
//
// Now let's run this example using the input image
// \code{BrainProtonDensitySlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations. The following
// table presents the parameters used for some structures.
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|c|c|p{2cm}|}
// \hline
// Structure & Seed Index & $\sigma$ & $\alpha$ & $\beta$ & Threshold & Output Image from left \\ \hline
// Left Ventricle & $(81,114)$ & 1.0 & -0.5 & 3.0 & 100 & First \\ \hline
// Right Ventricle & $(99,114)$ & 1.0 & -0.5 & 3.0 & 100 & Second \\ \hline
// White matter & $(56, 92)$ & 1.0 & -0.3 & 2.0 & 200 & Third \\ \hline
// Gray matter & $(40, 90)$ & 0.5 & -0.3 & 2.0 & 200 & Fourth \\ \hline
// \end{tabular}
// \end{center}
// \itkcaption[FastMarching segmentation example parameters]{Parameters used
// for segmenting some brain structures shown in
// Figure~\ref{fig:FastMarchingImageFilterOutput2} using the filter
// FastMarchingImageFilter. All of them used a stopping value of
// 100.\label{tab:FastMarchingImageFilterOutput2}}
// \end{table}
//
// Figure~\ref{fig:FastMarchingImageFilterOutput} presents the intermediate
// outputs of the pipeline illustrated in
// Figure~\ref{fig:FastMarchingCollaborationDiagram}. They are from left to
// right: the output of the anisotropic diffusion filter, the gradient
// magnitude of the smoothed image and the sigmoid of the gradient magnitude
// which is finally used as the speed image for the
// FastMarchingImageFilter.
//
// \begin{figure} \center
// \includegraphics[height=0.40\textheight]{BrainProtonDensitySlice}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput1}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput2}
// \includegraphics[height=0.40\textheight]{FastMarchingFilterOutput3}
// \itkcaption[FastMarchingImageFilter intermediate output]{Images generated by
// the segmentation process based on the FastMarchingImageFilter. From left
// to right and top to bottom: input image to be segmented, image smoothed with an
// edge-preserving smoothing filter, gradient magnitude of the smoothed
// image, sigmoid of the gradient magnitude. This last image, the sigmoid, is
// used to compute the speed term for the front propagation. }
// \label{fig:FastMarchingImageFilterOutput}
// \end{figure}
//
// Notice that the gray matter is not being completely segmented. This
// illustrates the vulnerability of the level set methods when the
// anatomical structures to be segmented do not occupy extended regions of
// the image. This is especially true when the width of the structure is
// comparable to the size of the attenuation bands generated by the
// gradient filter. A possible workaround for this limitation is to use
// multiple seeds distributed along the elongated object. However, note
// that white matter versus gray matter segmentation is not a trivial task,
// and may require a more elaborate approach than the one used in this
// basic example.
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput5}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput6}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput7}
// \includegraphics[width=0.24\textwidth]{FastMarchingImageFilterOutput8}
// \itkcaption[FastMarchingImageFilter segmentations]{Images generated by the
// segmentation process based on the FastMarchingImageFilter. From left to
// right: segmentation of the left ventricle, segmentation of the right
// ventricle, segmentation of the white matter, attempt of segmentation of
// the gray matter.}
// \label{fig:FastMarchingImageFilterOutput2}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|