1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// In medical imaging applications, the general shape, location and
// orientation of an anatomical structure of interest is typically
// known \emph{a priori}. This information can be used to aid the
// segmentation process especially when image contrast is low or
// when the object boundary is not distinct.
//
// In \cite{Leventon2000}, Leventon \emph{et al.} extended the
// geodesic active contours method with an additional shape-influenced term in
// the driving PDE. The \doxygen{GeodesicActiveContourShapePriorLevelSetFilter}
// is a generalization of Leventon's approach and its use is illustrated
// in the following example.
//
// To support shape-guidance, the generic level set
// equation (Eqn(~\ref{eqn:LevelSetEquation})) is extended to incorporate a
// shape guidance term:
//
// \begin{equation}
// \label{eqn:ShapeInfluenceTerm}
// \xi \left(\psi^{*}(\mathbf{x}) - \psi(\mathbf{x})\right)
// \end{equation}
//
// where $\psi^{*}$ is the signed distance function of the ``best-fit'' shape
// with respect to a shape model. The new term has the effect of driving the
// contour towards the best-fit shape. The scalar $\xi$ weights the influence
// of the shape term in the overall evolution. In general, the best-fit shape
// is not known ahead of time and has to be iteratively estimated in
// conjunction with the contour evolution.
//
// As with the \doxygen{GeodesicActiveContourLevelSetImageFilter}, the
// GeodesicActiveContourShapePriorLevelSetImageFilter expects two input
// images: the first is an initial level set and the second a feature image
// that represents the image edge potential. The configuration of this
// example is quite similar to the example in
// Section~\ref{sec:GeodesicActiveContourImageFilter} and hence the description
// will focus on the new objects involved in the segmentation process as shown
// in Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}.
//
// \begin{figure} \center
// \includegraphics[width=\textwidth]{GeodesicActiveContourShapePriorCollaborationDiagram}
// \itkcaption[GeodesicActiveContourShapePriorLevelSetImageFilter collaboration
// diagram]{Collaboration diagram for the GeodesicActiveContourShapePriorLevelSetImageFilter
// applied to a segmentation task.}
// \label{fig:GeodesicActiveContourShapePriorCollaborationDiagram}
// \end{figure}
//
// The process pipeline begins with centering the input image using the
// the \doxygen{ChangeInformationImageFilter} to simplify the estimation of the pose
// of the shape, to be explained later.
// The centered image is then smoothed using non-linear diffusion to
// remove noise and the gradient magnitude is computed from the smoothed image.
// For simplicity, this example uses the \doxygen{BoundedReciprocalImageFilter}
// to produce the edge potential image.
//
// The \doxygen{FastMarchingImageFilter} creates an initial level set using three
// user specified seed positions and a initial contour radius. Three seeds are
// used in this example to facilitate the segmentation of long narrow objects
// in a smaller number of iterations.
// The output of the FastMarchingImageFilter is passed
// as the input to the GeodesicActiveContourShapePriorLevelSetImageFilter.
// At then end of the segmentation process, the output level set is passed
// to the \doxygen{BinaryThresholdImageFilter} to produce a binary mask
// representing the segmented object.
//
// The remaining objects in
// Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}
// are used for shape modeling and estimation.
// The \doxygen{PCAShapeSignedDistanceFunction} represents a statistical
// shape model defined by a mean signed distance and the first $K$
// principal components modes; while the \doxygen{Euler2DTransform} is used
// to represent the pose of the shape. In this implementation, the
// best-fit shape estimation problem is reformulated as a minimization problem
// where the \doxygen{ShapePriorMAPCostFunction} is the cost function to
// be optimized using the \doxygen{OnePlusOneEvolutionaryOptimizer}.
//
// It should be noted that, although particular shape model, transform
// cost function, and optimizer are used in this example, the implementation
// is generic, allowing different instances of these components to be
// plugged in. This flexibility allows a user to tailor the behavior of the
// segmentation process to suit the circumstances of the targeted application.
//
// Let's start the example by including the headers of the new filters
// involved in the segmentation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkGeodesicActiveContourShapePriorLevelSetImageFilter.h"
#include "itkChangeInformationImageFilter.h"
#include "itkBoundedReciprocalImageFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we include the headers of the objects involved in shape
// modeling and estimation.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkPCAShapeSignedDistanceFunction.h"
#include "itkEuler2DTransform.h"
#include "itkOnePlusOneEvolutionaryOptimizer.h"
#include "itkNormalVariateGenerator.h"
#include "vnl/vnl_sample.h"
#include "itkNumericSeriesFileNames.h"
// Software Guide : EndCodeSnippet
#include "itkCurvatureAnisotropicDiffusionImageFilter.h"
#include "itkGradientMagnitudeRecursiveGaussianImageFilter.h"
#include "itkFastMarchingImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkSpatialFunctionImageEvaluatorFilter.h"
// Software Guide : BeginLatex
//
// Given the numerous parameters involved in tuning this segmentation method
// it is not uncommon for a segmentation process to
// run for several minutes and still produce an unsatisfactory result. For debugging
// purposes it is quite helpful to track the evolution of the
// segmentation as it progresses. The following defines a
// custom \doxygen{Command} class
// for monitoring the RMS change and shape parameters at each iteration.
//
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!Monitoring}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!Monitoring}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkCommand.h"
template<class TFilter>
class CommandIterationUpdate : public itk::Command
{
public:
typedef CommandIterationUpdate Self;
typedef itk::Command Superclass;
typedef itk::SmartPointer<Self> Pointer;
itkNewMacro( Self );
protected:
CommandIterationUpdate() {};
public:
void Execute(itk::Object *caller,
const itk::EventObject & event) ITK_OVERRIDE
{
Execute( (const itk::Object *) caller, event);
}
void Execute(const itk::Object * object,
const itk::EventObject & event) ITK_OVERRIDE
{
const TFilter * filter = static_cast< const TFilter * >( object );
if( typeid( event ) != typeid( itk::IterationEvent ) )
{ return; }
std::cout << filter->GetElapsedIterations() << ": ";
std::cout << filter->GetRMSChange() << " ";
std::cout << filter->GetCurrentParameters() << std::endl;
}
};
// Software Guide : EndCodeSnippet
int main( int argc, char *argv[] )
{
if( argc < 18 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage";
std::cerr << " seed1X seed1Y";
std::cerr << " seed2X seed2Y";
std::cerr << " seed3X seed3Y";
std::cerr << " initialDistance";
std::cerr << " sigma";
std::cerr << " propagationScaling shapePriorScaling";
std::cerr << " meanShapeImage numberOfModes shapeModeFilePattern";
std::cerr << " startX startY" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the image type using a particular pixel type and
// dimension. In this case we will use 2D \code{float} images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
// The following lines instantiate the thresholding filter that will
// process the final level set at the output of the
// GeodesicActiveContourLevelSetImageFilter.
//
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::BinaryThresholdImageFilter<
InternalImageType,
OutputImageType > ThresholdingFilterType;
ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
thresholder->SetLowerThreshold( -1000.0 );
thresholder->SetUpperThreshold( 0.0 );
thresholder->SetOutsideValue( 0 );
thresholder->SetInsideValue( 255 );
// We instantiate reader and writer types in the following lines.
//
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// The RescaleIntensityImageFilter type is declared below. This filter will
// renormalize image before sending them to writers.
//
typedef itk::RescaleIntensityImageFilter<
InternalImageType,
OutputImageType > CastFilterType;
// The \doxygen{CurvatureAnisotropicDiffusionImageFilter} type is
// instantiated using the internal image type.
//
typedef itk::CurvatureAnisotropicDiffusionImageFilter<
InternalImageType,
InternalImageType > SmoothingFilterType;
SmoothingFilterType::Pointer smoothing = SmoothingFilterType::New();
// The types of the
// GradientMagnitudeRecursiveGaussianImageFilter is
// instantiated using the internal image type.
//
typedef itk::GradientMagnitudeRecursiveGaussianImageFilter<
InternalImageType,
InternalImageType > GradientFilterType;
GradientFilterType::Pointer gradientMagnitude = GradientFilterType::New();
// We declare now the type of the FastMarchingImageFilter that
// will be used to generate the initial level set in the form of a distance
// map.
//
typedef itk::FastMarchingImageFilter<
InternalImageType,
InternalImageType > FastMarchingFilterType;
// Next we construct one filter of this class using the \code{New()}
// method.
//
FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
// Software Guide : BeginLatex
//
// The following line instantiate a
// \doxygen{GeodesicActiveContourShapePriorLevelSetImageFilter}
// using the \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GeodesicActiveContourShapePriorLevelSetImageFilter<
InternalImageType, InternalImageType >
GeodesicActiveContourFilterType;
GeodesicActiveContourFilterType::Pointer geodesicActiveContour =
GeodesicActiveContourFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \doxygen{ChangeInformationImageFilter} is the first filter in the preprocessing
// stage and is used to force the image origin to the center of the image.
//
// \index{itk::ChangeInformationImageFilter!CenterImageOn()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ChangeInformationImageFilter<
InternalImageType > CenterFilterType;
CenterFilterType::Pointer center = CenterFilterType::New();
center->CenterImageOn();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will use the bounded reciprocal $1/(1+x)$ of
// the image gradient magnitude as the edge potential feature image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::BoundedReciprocalImageFilter<
InternalImageType,
InternalImageType > ReciprocalFilterType;
ReciprocalFilterType::Pointer reciprocal = ReciprocalFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In the GeodesicActiveContourShapePriorLevelSetImageFilter, scaling parameters
// are used to trade off between the propagation (inflation), the
// curvature (smoothing), the advection, and the shape influence terms.
// These parameters are set
// using methods \code{SetPropagationScaling()},
// \code{SetCurvatureScaling()}, \code{SetAdvectionScaling()} and
// \code{SetShapePriorScaling()}. In this
// example, we will set the curvature and advection scales to one and let
// the propagation and shape prior scale be command-line arguments.
//
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Geodesic\-Active\-Contour\-Shape\-Prior\-LevelSet\-Image\-Filter!SetAdvectionScaling()}
// \index{itk::Shape\-Prior\-Segmentation\-Level\-Set\-Image\-Filter!SetAdvectionScaling()}
//
// Software Guide : EndLatex
const double propagationScaling = atof( argv[11] );
const double shapePriorScaling = atof( argv[12] );
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetPropagationScaling( propagationScaling );
geodesicActiveContour->SetShapePriorScaling( shapePriorScaling );
geodesicActiveContour->SetCurvatureScaling( 1.0 );
geodesicActiveContour->SetAdvectionScaling( 1.0 );
// Software Guide : EndCodeSnippet
// Once activiated the level set evolution will stop if the convergence
// criteria or if the maximum number of iterations is reached. The
// convergence criteria is defined in terms of the root mean squared (RMS)
// change in the level set function. The evolution is said to have
// converged if the RMS change is below a user specified threshold. In a
// real application is desirable to couple the evolution of the zero set
// to a visualization module allowing the user to follow the evolution of
// the zero set. With this feedback, the user may decide when to stop the
// algorithm before the zero set leaks through the regions of low gradient
// in the contour of the anatomical structure to be segmented.
geodesicActiveContour->SetMaximumRMSError( 0.005 );
geodesicActiveContour->SetNumberOfIterations( 400 );
// Software Guide : BeginLatex
//
// Each iteration, the current ``best-fit'' shape is estimated from the
// edge potential image and the current contour. To increase speed, only
// information within the sparse field layers of the current contour is used
// in the estimation. The default number of sparse field layers is
// the same as
// the ImageDimension which does not contain enough information to get
// a reliable best-fit shape estimate. Thus, we override the default and
// set the number of layers to 4.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetNumberOfLayers( 4 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are then connected in a pipeline as illustrated in
// Figure~\ref{fig:GeodesicActiveContourShapePriorCollaborationDiagram}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
center->SetInput( reader->GetOutput() );
smoothing->SetInput( center->GetOutput() );
gradientMagnitude->SetInput( smoothing->GetOutput() );
reciprocal->SetInput( gradientMagnitude->GetOutput() );
geodesicActiveContour->SetInput( fastMarching->GetOutput() );
geodesicActiveContour->SetFeatureImage( reciprocal->GetOutput() );
thresholder->SetInput( geodesicActiveContour->GetOutput() );
writer->SetInput( thresholder->GetOutput() );
// Software Guide : EndCodeSnippet
// The CurvatureAnisotropicDiffusionImageFilter requires a couple of
// parameter to be defined. The following are typical values for $2D$
// images. However they may have to be adjusted depending on the amount of
// noise present in the input image. This filter has been discussed in
// section~\ref{sec:GradientAnisotropicDiffusionImageFilter}.
smoothing->SetTimeStep( 0.125 );
smoothing->SetNumberOfIterations( 5 );
smoothing->SetConductanceParameter( 9.0 );
// The GradientMagnitudeRecursiveGaussianImageFilter performs the
// equivalent of a convolution with a Gaussian kernel, followed by a
// derivative operator. The sigma of this Gaussian can be used to control
// the range of influence of the image edges. This filter has been discussed
// in Section~\ref{sec:GradientMagnitudeRecursiveGaussianImageFilter}.
const double sigma = atof( argv[10] );
gradientMagnitude->SetSigma( sigma );
// The FastMarchingImageFilter requires the user to provide a seed
// point from which the level set will be generated. The user can actually
// pass not only one seed point but a set of them. Note that the
// FastMarchingImageFilter is used here only as a helper in the
// determination of an initial level set. We could have used the
// \doxygen{DanielssonDistanceMapImageFilter} in the same way.
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();
InternalImageType::IndexType seedPosition;
seedPosition[0] = atoi( argv[3] );
seedPosition[1] = atoi( argv[4] );
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position. Note that here we assign the value of minus the
// user-provided distance to the unique node of the seeds passed to the
// FastMarchingImageFilter. In this way, the value will increment
// as the front is propagated, until it reaches the zero value corresponding
// to the contour. After this, the front will continue propagating until it
// fills up the entire image. The initial distance is taken here from the
// command line arguments. The rule of thumb for the user is to select this
// value as the distance from the seed points at which she want the initial
// contour to be.
const double initialDistance = atof( argv[9] );
NodeType node;
const double seedValue = - initialDistance;
node.SetValue( seedValue );
node.SetIndex( seedPosition );
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
seeds->Initialize();
seeds->InsertElement( 0, node );
seedPosition[0] = atoi( argv[5] );
seedPosition[1] = atoi( argv[6] );
node.SetIndex( seedPosition );
seeds->InsertElement( 1, node );
seedPosition[0] = atoi( argv[7] );
seedPosition[1] = atoi( argv[8] );
node.SetIndex( seedPosition );
seeds->InsertElement( 2, node );
// The set of seed nodes is passed now to the
// FastMarchingImageFilter with the method
// \code{SetTrialPoints()}.
//
fastMarching->SetTrialPoints( seeds );
// Since the FastMarchingImageFilter is used here just as a
// Distance Map generator. It does not require a speed image as input.
// Instead the constant value $1.0$ is passed using the
// \code{SetSpeedConstant()} method.
//
fastMarching->SetSpeedConstant( 1.0 );
// Here we configure all the writers required to see the intermediate
// outputs of the pipeline. This is added here only for
// pedagogical/debugging purposes. These intermediate output are normaly not
// required. Only the output of the final thresholding filter should be
// relevant. Observing intermediate output is helpful in the process of
// fine tuning the parameters of filters in the pipeline.
//
CastFilterType::Pointer caster1 = CastFilterType::New();
CastFilterType::Pointer caster2 = CastFilterType::New();
CastFilterType::Pointer caster3 = CastFilterType::New();
CastFilterType::Pointer caster4 = CastFilterType::New();
WriterType::Pointer writer1 = WriterType::New();
WriterType::Pointer writer2 = WriterType::New();
WriterType::Pointer writer3 = WriterType::New();
WriterType::Pointer writer4 = WriterType::New();
caster1->SetInput( smoothing->GetOutput() );
writer1->SetInput( caster1->GetOutput() );
writer1->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput1.png");
caster1->SetOutputMinimum( 0 );
caster1->SetOutputMaximum( 255 );
writer1->Update();
caster2->SetInput( gradientMagnitude->GetOutput() );
writer2->SetInput( caster2->GetOutput() );
writer2->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput2.png");
caster2->SetOutputMinimum( 0 );
caster2->SetOutputMaximum( 255 );
writer2->Update();
caster3->SetInput( reciprocal->GetOutput() );
writer3->SetInput( caster3->GetOutput() );
writer3->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput3.png");
caster3->SetOutputMinimum( 0 );
caster3->SetOutputMaximum( 255 );
writer3->Update();
caster4->SetInput( fastMarching->GetOutput() );
writer4->SetInput( caster4->GetOutput() );
writer4->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput4.png");
caster4->SetOutputMinimum( 0 );
caster4->SetOutputMaximum( 255 );
// The FastMarchingImageFilter requires the user to specify the
// size of the image to be produced as output. This is done using the
// \code{SetOutputRegion()}. Note that the size is obtained here from the
// output image of the centering filter. The size of this image is valid
// only after the \code{Update()} methods of this filter has been called
// directly or indirectly.
//
fastMarching->SetOutputRegion(
center->GetOutput()->GetBufferedRegion() );
fastMarching->SetOutputSpacing(
center->GetOutput()->GetSpacing() );
fastMarching->SetOutputOrigin(
center->GetOutput()->GetOrigin() );
// Software Guide : BeginLatex
//
// Next, we define the shape model. In this example,
// we use an implicit shape model based on the principal components
// such that:
//
// \begin{equation}
// \psi^{*}(\mathbf{x}) = \mu(\mathbf{x}) + \sum_k \alpha_k u_k(\mathbf{x})
// \end{equation}
//
// where $\mu(\mathbf{x})$ is the mean signed distance computed from training
// set of segmented objects and $u_k(\mathbf{x})$ are the first $K$ principal
// components of the offset (signed distance - mean).
// The coefficients $\{\alpha_k\}$ form the
// set of \emph{shape} parameters.
//
// Given a set of training data, the \doxygen{ImagePCAShapeModelEstimator}
// can be used to obtain
// the mean and principal mode shape images required by PCAShapeSignedDistanceFunction.
//
// \index{itk::PCAShapeSignedDistanceFunction!New()}
// \index{itk::PCAShapeSignedDistanceFunction!SetNumberOfPrincipalComponents()}
//
//
// Software Guide : EndLatex
const unsigned int numberOfPCAModes = atoi( argv[14] );
// Software Guide : BeginCodeSnippet
typedef itk::PCAShapeSignedDistanceFunction<
double,
Dimension,
InternalImageType > ShapeFunctionType;
ShapeFunctionType::Pointer shape = ShapeFunctionType::New();
shape->SetNumberOfPrincipalComponents( numberOfPCAModes );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will read the mean shape and
// principal mode images from file. We will assume that
// the filenames of the mode images form a numeric series starting from index 0.
//
// \index{itk::PCAShapeSignedDistanceFunction!SetMeanImage()}
// \index{itk::PCAShapeSignedDistanceFunction!SetPrincipalComponentsImages()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ReaderType::Pointer meanShapeReader = ReaderType::New();
meanShapeReader->SetFileName( argv[13] );
meanShapeReader->Update();
std::vector<InternalImageType::Pointer> shapeModeImages( numberOfPCAModes );
itk::NumericSeriesFileNames::Pointer fileNamesCreator =
itk::NumericSeriesFileNames::New();
fileNamesCreator->SetStartIndex( 0 );
fileNamesCreator->SetEndIndex( numberOfPCAModes - 1 );
fileNamesCreator->SetSeriesFormat( argv[15] );
const std::vector<std::string> & shapeModeFileNames =
fileNamesCreator->GetFileNames();
for (unsigned int k = 0; k < numberOfPCAModes; ++k )
{
ReaderType::Pointer shapeModeReader = ReaderType::New();
shapeModeReader->SetFileName( shapeModeFileNames[k].c_str() );
shapeModeReader->Update();
shapeModeImages[k] = shapeModeReader->GetOutput();
}
shape->SetMeanImage( meanShapeReader->GetOutput() );
shape->SetPrincipalComponentImages( shapeModeImages );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Further we assume that the shape modes have been normalized
// by multiplying with the corresponding singular value. Hence,
// we can set the principal component standard deviations to all
// ones.
//
// \index{itk::PCAShapeSignedDistanceFunction!Set\-Principal\-Component\-Standard\-Deviations()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ShapeFunctionType::ParametersType pcaStandardDeviations( numberOfPCAModes );
pcaStandardDeviations.Fill( 1.0 );
shape->SetPrincipalComponentStandardDeviations( pcaStandardDeviations );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we instantiate a \doxygen{Euler2DTransform} and connect it to the
// PCASignedDistanceFunction. The transform represent
// the pose of the shape. The parameters of the transform
// forms the set of \emph{pose} parameters.
//
// \index{itk::PCAShapeSignedDistanceFunction!SetTransform()}
// \index{itk::ShapeSignedDistanceFunction!SetTransform()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Euler2DTransform<double> TransformType;
TransformType::Pointer transform = TransformType::New();
shape->SetTransform( transform );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Before updating the level set at each iteration, the parameters
// of the current best-fit shape is estimated by minimizing the
// \doxygen{ShapePriorMAPCostFunction}. The cost function is composed of
// four terms: contour fit, image fit, shape prior and pose prior.
// The user can specify the weights applied to each term.
//
// \index{itk::ShapePriorMAPCostFunction!SetWeights()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ShapePriorMAPCostFunction<
InternalImageType,
InternalPixelType > CostFunctionType;
CostFunctionType::Pointer costFunction = CostFunctionType::New();
CostFunctionType::WeightsType weights;
weights[0] = 1.0; // weight for contour fit term
weights[1] = 20.0; // weight for image fit term
weights[2] = 1.0; // weight for shape prior term
weights[3] = 1.0; // weight for pose prior term
costFunction->SetWeights( weights );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Contour fit measures the likelihood of seeing the current
// evolving contour for a given set of shape/pose parameters.
// This is computed by counting the number of pixels inside
// the current contour but outside the current shape.
//
// Image fit measures the likelihood of seeing certain image
// features for a given set of shape/pose parameters. This is
// computed by assuming that ( 1 - edge potential ) approximates
// a zero-mean, unit variance Gaussian along the normal of
// the evolving contour. Image fit is then computed by computing
// the Laplacian goodness of fit of the Gaussian:
//
// \begin{equation}
// \sum \left( G(\psi(\mathbf{x})) - |1 - g(\mathbf{x})| \right)^2
// \end{equation}
//
// where $G$ is a zero-mean, unit variance Gaussian and $g$ is
// the edge potential feature image.
//
// The pose parameters are assumed to have a uniform distribution
// and hence do not contribute to the cost function.
// The shape parameters are assumed to have a Gaussian distribution.
// The parameters of the distribution are user-specified. Since we
// assumed the principal modes have already been normalized,
// we set the distribution to zero mean and unit variance.
//
// \index{itk::ShapePriorMAPCostFunction!SetShapeParameterMeans()}
// \index{itk::ShapePriorMAPCostFunction!SetShapeParameterStandardDeviations()}
//
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
CostFunctionType::ArrayType mean( shape->GetNumberOfShapeParameters() );
CostFunctionType::ArrayType stddev( shape->GetNumberOfShapeParameters() );
mean.Fill( 0.0 );
stddev.Fill( 1.0 );
costFunction->SetShapeParameterMeans( mean );
costFunction->SetShapeParameterStandardDeviations( stddev );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In this example, we will use the \doxygen{OnePlusOneEvolutionaryOptimizer}
// to optimize the cost function.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::OnePlusOneEvolutionaryOptimizer OptimizerType;
OptimizerType::Pointer optimizer = OptimizerType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The evolutionary optimization algorithm is based on testing
// random permutations of the parameters. As such, we need to provide
// the optimizer with a random number generator. In the following lines,
// we create a \doxygen{NormalVariateGenerator}, seed it, and
// connect it to the optimizer.
//
// \index{itk::Statistics::NormalVariateGenerator!Initialize()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetNormalVariateGenerator()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::NormalVariateGenerator GeneratorType;
GeneratorType::Pointer generator = GeneratorType::New();
generator->Initialize( 20020702 );
optimizer->SetNormalVariateGenerator( generator );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The cost function has $K+3$ parameters. The first $K$
// parameters are the principal component multipliers, followed
// by the 2D rotation parameter (in radians) and the x- and
// y- translation parameters (in mm). We need to carefully
// scale the different types of parameters to compensate
// for the differences in the dynamic ranges of the parameters.
//
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetScales()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
OptimizerType::ScalesType scales( shape->GetNumberOfParameters() );
scales.Fill( 1.0 );
for( unsigned int k = 0; k < numberOfPCAModes; k++ )
{
scales[k] = 20.0; // scales for the pca mode multiplier
}
scales[numberOfPCAModes] = 350.0; // scale for 2D rotation
optimizer->SetScales( scales );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we specify the initial radius, the shrink and
// grow mutation factors and termination criteria of the optimizer.
// Since the best-fit shape is re-estimated each iteration of
// the curve evolution, we do not need to spend too much time finding the true
// minimizing solution each time; we only need to head towards it. As such,
// we only require a small number of optimizer iterations.
//
// \index{itk::OnePlusOneEvolutionaryOptimizer!Initialize()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetEpsilon()}
// \index{itk::OnePlusOneEvolutionaryOptimizer!SetMaximumIteration()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double initRadius = 1.05;
double grow = 1.1;
double shrink = pow(grow, -0.25);
optimizer->Initialize(initRadius, grow, shrink);
optimizer->SetEpsilon(1.0e-6); // minimal search radius
optimizer->SetMaximumIteration(15);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Before starting the segmentation process we need to also supply the initial
// best-fit shape estimate. In this example, we start with the unrotated mean shape
// with the initial x- and y- translation specified through command-line
// arguments.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ShapeFunctionType::ParametersType parameters(
shape->GetNumberOfParameters() );
parameters.Fill( 0.0 );
parameters[numberOfPCAModes + 1] = atof( argv[16] ); // startX
parameters[numberOfPCAModes + 2] = atof( argv[17] ); // startY
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, we connect all the components to the filter and add our
// observer.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
geodesicActiveContour->SetShapeFunction( shape );
geodesicActiveContour->SetCostFunction( costFunction );
geodesicActiveContour->SetOptimizer( optimizer );
geodesicActiveContour->SetInitialParameters( parameters );
typedef CommandIterationUpdate<GeodesicActiveContourFilterType> CommandType;
CommandType::Pointer observer = CommandType::New();
geodesicActiveContour->AddObserver( itk::IterationEvent(), observer );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block to handle exceptions should errors occur.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Print out some useful information
std::cout << std::endl;
std::cout << "Max. no. iterations: " << geodesicActiveContour->GetNumberOfIterations() << std::endl;
std::cout << "Max. RMS error: " << geodesicActiveContour->GetMaximumRMSError() << std::endl;
std::cout << std::endl;
std::cout << "No. elpased iterations: " << geodesicActiveContour->GetElapsedIterations() << std::endl;
std::cout << "RMS change: " << geodesicActiveContour->GetRMSChange() << std::endl;
std::cout << "Parameters: " << geodesicActiveContour->GetCurrentParameters() << std::endl;
writer4->Update();
// The following writer type is used to save the output of the time-crossing
// map in a file with apropiate pixel representation. The advantage of saving
// this image in native format is that it can be used with a viewer to help
// determine an appropriate threshold to be used on the output of the
// fastmarching filter.
//
typedef itk::ImageFileWriter< InternalImageType > InternalWriterType;
InternalWriterType::Pointer mapWriter = InternalWriterType::New();
mapWriter->SetInput( fastMarching->GetOutput() );
mapWriter->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput4.mha");
mapWriter->Update();
InternalWriterType::Pointer speedWriter = InternalWriterType::New();
speedWriter->SetInput( reciprocal->GetOutput() );
speedWriter->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput3.mha");
speedWriter->Update();
InternalWriterType::Pointer gradientWriter = InternalWriterType::New();
gradientWriter->SetInput( gradientMagnitude->GetOutput() );
gradientWriter->SetFileName("GeodesicActiveContourShapePriorImageFilterOutput2.mha");
gradientWriter->Update();
// Also write out the initial and final best fit shape
typedef itk::SpatialFunctionImageEvaluatorFilter<
ShapeFunctionType,
InternalImageType,
InternalImageType > EvaluatorFilterType;
EvaluatorFilterType::Pointer evaluator = EvaluatorFilterType::New();
evaluator->SetInput( geodesicActiveContour->GetOutput() );
evaluator->SetFunction( shape );
shape->SetParameters( geodesicActiveContour->GetInitialParameters() );
thresholder->SetInput( evaluator->GetOutput() );
writer->SetFileName( "GeodesicActiveContourShapePriorImageFilterOutput5.png" );
writer->Update();
shape->SetParameters( geodesicActiveContour->GetCurrentParameters() );
evaluator->Modified();
writer->SetFileName( "GeodesicActiveContourShapePriorImageFilterOutput6.png" );
writer->Update();
// Software Guide : BeginLatex
//
// Deviating from previous examples, we will demonstrate this example using
// \code{BrainMidSagittalSlice.png}
// (Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput}, left)
// from the \code{Examples/Data} directory.
// The aim here is to segment the corpus callosum from the image using a shape model
// defined by \code{CorpusCallosumMeanShape.mha} and the first three principal
// components \code{CorpusCallosumMode0.mha}, \code{CorpusCallosumMode1.mha} and
// \code{CorpusCallosumMode12.mha}. As shown in Figure~\ref{fig:CorpusCallosumPCAModes},
// the first mode captures scaling, the second mode captures the shifting of mass between
// the rostrum and the splenium and the third mode captures the degree of curvature.
// Segmentation results with and without shape
// guidance are shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2}.
//
//
// \begin{figure} \center
// \includegraphics[width=0.30\textwidth]{BrainMidSagittalSlice}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput5}
// \itkcaption[GeodesicActiveContourShapePriorImageFilter input image and initial model]{
// The input image to the GeodesicActiveContourShapePriorLevelSetImageFilter is a
// synthesized MR-T1 mid-sagittal slice ($217 \times 180$ pixels, $1 \times 1$ mm spacing)
// of the brain (left) and the initial best-fit shape
// (right) chosen to roughly overlap the corpus callosum in the image to be segmented.}
//
// \label{fig:GeodesicActiveContourShapePriorImageFilterOutput}
// \end{figure}
//
//
// \begin{figure}
// \center
// \begin{tabular}{cccc}
// & $-3\sigma$ & mean & $+3\sigma$ \\ mode 0: &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus0} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus0} \\ mode 1: &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus1} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus1} \\ mode 2: &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModeMinus2} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumMeanShape} &
// \includegraphics[width=0.10\textwidth]{CorpusCallosumModePlus2} \\ \end{tabular}
// \itkcaption[Corpus callosum PCA modes]{First three PCA modes of a low-resolution
// ($58 \times 31$ pixels, $2 \times 2$ mm spacing) corpus callosum model used in the
// shape guided geodesic active contours example.}
//
// \label{fig:CorpusCallosumPCAModes}
// \end{figure}
//
//
//
// A sigma value of $1.0$ was used to compute the image gradient and the
// propagation and shape prior scaling are respectively set to $0.5$ and $0.02$.
// An initial level set was created by placing one seed point in the
// rostrum $(60,102)$, one in the splenium $(120, 85)$ and one
// centrally in the body $(88,83)$ of the corpus callosum with
// an initial radius of $6$ pixels at each seed position.
// The best-fit shape was initially placed with a translation of
// $(10,0)$mm so that it roughly overlapped
// the corpus callosum in the image as shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput} (right).
//
//
// From Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2} it can be
// observed that without
// shape guidance (left), segmentation using geodesic active contour leaks in the
// regions where the corpus callosum blends into the surrounding brain tissues. With
// shape guidance (center), the segmentation is constrained by the global shape model
// to prevent leaking.
//
// The final best-fit shape parameters after the segmentation process is:
//
// \begin{verbatim}
// Parameters: [-0.384988, -0.578738, 0.557793, 0.275202, 16.9992, 4.73473]
// \end{verbatim}
//
// and is shown in
// Figure~\ref{fig:GeodesicActiveContourShapePriorImageFilterOutput2} (right). Note that a
// $0.28$ radian ($15.8$ degree) rotation has been introduced to match the model to
// the corpus callosum in the image. Additionally, a negative weight for the first
// mode shrinks the size relative to the mean shape. A negative weight for the second mode
// shifts the mass to splenium, and a positive weight for the third mode
// increases the curvature. It can also be observed that the final segmentation is
// a combination of the best-fit shape with additional local deformation. The combination
// of both global and local shape allows the segmentation to capture fine details not represented
// in the shape model.
//
//
// \begin{figure} \center
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput1}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput2}
// \includegraphics[width=0.30\textwidth]{GeodesicActiveContourShapePriorImageFilterOutput6}
// \itkcaption[GeodesicActiveContourShapePriorImageFilter segmentations]{Corpus callosum
// segmentation using geodesic active contours without (left) and with (center) shape guidance.
// The image on the right represents the best-fit shape at the end of the segmentation process.}
//
// \label{fig:GeodesicActiveContourShapePriorImageFilterOutput2}
// \end{figure}
//
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|