1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// This example illustrates the use of the
// \doxygen{HoughTransform2DLinesImageFilter} to find straight lines in a
// 2-dimensional image.
//
// First, we include the header files of the filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkHoughTransform2DLinesImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkImageRegionIterator.h"
#include "itkThresholdImageFilter.h"
#include "itkMinimumMaximumImageCalculator.h"
#include "itkGradientMagnitudeImageFilter.h"
#include "itkDiscreteGaussianImageFilter.h"
#include "itkCastImageFilter.h"
int main( int argc, char *argv[] )
{
if( argc < 4 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0] << std::endl;
std::cerr << " inputImage " << std::endl;
std::cerr << " outputImage" << std::endl;
std::cerr << " numberOfLines " << std::endl;
std::cerr << " variance of the accumulator blurring (default = 5) " << std::endl;
std::cerr << " radius of the disk to remove from the accumulator (default = 10) "<< std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Next, we declare the pixel type and image dimension and specify the
// image type to be used as input. We also specify the image type of the
// accumulator used in the Hough transform filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelType;
typedef float AccumulatorPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< PixelType, Dimension > ImageType;
typedef itk::Image< AccumulatorPixelType, Dimension > AccumulatorImageType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We setup a reader to load the input image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
ImageType::Pointer localImage = reader->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once the image is loaded, we apply a
// \doxygen{GradientMagnitudeImageFilter} to segment edges. This casts
// the input image using a \doxygen{CastImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::CastImageFilter< ImageType, AccumulatorImageType >
CastingFilterType;
CastingFilterType::Pointer caster = CastingFilterType::New();
std::cout << "Applying gradient magnitude filter" << std::endl;
typedef itk::GradientMagnitudeImageFilter<AccumulatorImageType,
AccumulatorImageType > GradientFilterType;
GradientFilterType::Pointer gradFilter = GradientFilterType::New();
caster->SetInput(localImage);
gradFilter->SetInput(caster->GetOutput());
gradFilter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The next step is to apply a threshold filter on the gradient magnitude
// image to keep only bright values. Only pixels with a high value will be
// used by the Hough transform filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "Thresholding" << std::endl;
typedef itk::ThresholdImageFilter<AccumulatorImageType> ThresholdFilterType;
ThresholdFilterType::Pointer threshFilter = ThresholdFilterType::New();
threshFilter->SetInput( gradFilter->GetOutput());
threshFilter->SetOutsideValue(0);
unsigned char threshBelow = 0;
unsigned char threshAbove = 255;
threshFilter->ThresholdOutside(threshBelow,threshAbove);
threshFilter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create the HoughTransform2DLinesImageFilter based on the pixel type
// of the input image (the resulting image from the ThresholdImageFilter).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "Computing Hough Map" << std::endl;
typedef itk::HoughTransform2DLinesImageFilter<AccumulatorPixelType,
AccumulatorPixelType> HoughTransformFilterType;
HoughTransformFilterType::Pointer houghFilter
= HoughTransformFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the input to the filter to be the output of the
// ThresholdImageFilter. We set also the number of lines we are looking
// for. Basically, the filter computes the Hough map, blurs it using a
// certain variance and finds maxima in the Hough map. After a maximum is
// found, the local neighborhood, a circle, is removed from the Hough
// map. SetDiscRadius() defines the radius of this disc.
//
// The output of the filter is the accumulator.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
houghFilter->SetInput(threshFilter->GetOutput());
houghFilter->SetNumberOfLines(atoi(argv[3]));
if(argc > 4 )
{
houghFilter->SetVariance(atof(argv[4]));
}
if(argc > 5 )
{
houghFilter->SetDiscRadius(atof(argv[5]));
}
houghFilter->Update();
AccumulatorImageType::Pointer localAccumulator = houghFilter->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can also get the lines as \doxygen{LineSpatialObject}. The
// \code{GetLines()} function return a list of those.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
HoughTransformFilterType::LinesListType lines;
lines = houghFilter->GetLines();
std::cout << "Found " << lines.size() << " line(s)." << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can then allocate an image to draw the resulting lines as binary
// objects.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
OutputImageType::Pointer localOutputImage = OutputImageType::New();
OutputImageType::RegionType region(localImage->GetLargestPossibleRegion());
localOutputImage->SetRegions(region);
localOutputImage->CopyInformation(localImage);
localOutputImage->Allocate(true); // initialize buffer to zero
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We iterate through the list of lines and we draw them.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HoughTransformFilterType::LinesListType::const_iterator LineIterator;
LineIterator itLines = lines.begin();
while( itLines != lines.end() )
{
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We get the list of points which consists of two points to represent a
// straight line. Then, from these two points, we compute a fixed point
// $u$ and a unit vector $\vec{v}$ to parameterize the line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HoughTransformFilterType::LineType::PointListType PointListType;
PointListType pointsList = (*itLines)->GetPoints();
PointListType::const_iterator itPoints = pointsList.begin();
double u[2];
u[0] = (*itPoints).GetPosition()[0];
u[1] = (*itPoints).GetPosition()[1];
itPoints++;
double v[2];
v[0] = u[0]-(*itPoints).GetPosition()[0];
v[1] = u[1]-(*itPoints).GetPosition()[1];
double norm = std::sqrt(v[0]*v[0]+v[1]*v[1]);
v[0] /= norm;
v[1] /= norm;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We draw a white pixels in the output image to represent the line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ImageType::IndexType localIndex;
itk::Size<2> size = localOutputImage->GetLargestPossibleRegion().GetSize();
float diag = std::sqrt((float)( size[0]*size[0] + size[1]*size[1] ));
for(int i=static_cast<int>(-diag); i<static_cast<int>(diag); i++)
{
localIndex[0]=(long int)(u[0]+i*v[0]);
localIndex[1]=(long int)(u[1]+i*v[1]);
OutputImageType::RegionType outputRegion =
localOutputImage->GetLargestPossibleRegion();
if( outputRegion.IsInside( localIndex ) )
{
localOutputImage->SetPixel( localIndex, 255 );
}
}
itLines++;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We setup a writer to write out the binary image created.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetFileName( argv[2] );
writer->SetInput( localOutputImage );
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|