1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// INPUTS: {ThresholdSegmentationLevelSetImageFilterVentricle.png}
// OUTPUTS: {LaplacianSegmentationLevelSetImageFilterVentricle.png}
// ARGUMENTS: 10 2.0 1 127.5 15
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// \index{itk::Laplacian\-Segmentation\-Level\-Set\-Image\-Filter}
//
// The \doxygen{LaplacianSegmentationLevelSetImageFilter} defines a speed
// term based on second derivative features in the image. The speed term is
// calculated as the Laplacian of the image values. The goal is to attract
// the evolving level set surface to local zero-crossings in the
// Laplacian image. Like \doxygen{CannySegmentationLevelSetImageFilter},
// this filter is more suitable for refining existing segmentations than as a
// stand-alone, region growing algorithm. It is possible to perform region
// growing segmentation, but be aware that the growing surface may tend to
// become ``stuck'' at local edges.
//
// The propagation (speed) term for the
// LaplacianSegmentationLevelSetImageFilter is constructed by applying the
// \doxygen{LaplacianImageFilter} to the input feature image. One nice
// property of using the Laplacian is that there are no free parameters in
// the calculation.
//
// LaplacianSegmentationLevelSetImageFilter expects two inputs. The
// first is an initial level set in the form of an \doxygen{Image}. The second
// input is the feature image $g$ from which the propagation term is calculated
// (see Equation~\ref{eqn:LevelSetEquation}). Because the filter performs a
// second derivative calculation, it is generally a good idea to do some
// preprocessing of the feature image to remove noise.
//
// Figure~\ref{fig:LaplacianSegmentationLevelSetImageFilterDiagram} shows how
// the image processing pipeline is constructed. We read two images: the
// image to segment and the image that contains the initial implicit surface.
// The goal is to refine the initial model from the second input to better
// match the structure represented by the initial implicit surface (a prior
// segmentation). The \code{feature} image is preprocessed using an
// anisotropic diffusion filter.
//
// \begin{figure} \center
// \includegraphics[width=0.9\textwidth]{LaplacianSegmentationLevelSetImageFilterCollaborationDiagram1}
// \itkcaption[LaplacianSegmentationLevelSetImageFilter collaboration
// diagram]{An image processing pipeline using
// LaplacianSegmentationLevelSetImageFilter for segmentation.}
// \label{fig:LaplacianSegmentationLevelSetImageFilterDiagram}
// \end{figure}
//
// Let's start by including the appropriate header files.
//
// Software Guide : EndLatex
#include "itkImage.h"
// Software Guide : BeginCodeSnippet
#include "itkLaplacianSegmentationLevelSetImageFilter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkFastMarchingImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkZeroCrossingImageFilter.h"
int main( int argc, char *argv[] )
{
if( argc < 9 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " InputImage InitialModel OutputImage";
std::cerr << " DiffusionIterations ";
std::cerr << " DiffusionConductance ";
std::cerr << " PropagationWeight";
std::cerr << " InitialModelIsovalue";
std::cerr << " MaximumIterations" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the image type using a particular pixel type and
// dimension. In this case we will use 2D \code{float} images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::BinaryThresholdImageFilter<
InternalImageType,
OutputImageType > ThresholdingFilterType;
ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
thresholder->SetUpperThreshold( 10.0 );
thresholder->SetLowerThreshold( 0.0 );
thresholder->SetOutsideValue( 0 );
thresholder->SetInsideValue( 255 );
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader1 = ReaderType::New();
ReaderType::Pointer reader2 = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader1->SetFileName( argv[1] );
reader2->SetFileName( argv[2] );
writer->SetFileName( argv[3] );
// Software Guide : BeginLatex
//
// The input image will be processed with a few iterations of
// feature-preserving diffusion. We create a filter and set the
// parameters. The number of iterations and the conductance parameter are
// taken from the command line.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::GradientAnisotropicDiffusionImageFilter< InternalImageType,
InternalImageType> DiffusionFilterType;
DiffusionFilterType::Pointer diffusion = DiffusionFilterType::New();
diffusion->SetNumberOfIterations( atoi(argv[4]) );
diffusion->SetTimeStep(0.125);
diffusion->SetConductanceParameter( atof(argv[5]) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following lines define and instantiate a
// LaplacianSegmentationLevelSetImageFilter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::LaplacianSegmentationLevelSetImageFilter< InternalImageType,
InternalImageType > LaplacianSegmentationLevelSetImageFilterType;
LaplacianSegmentationLevelSetImageFilterType::Pointer laplacianSegmentation
= LaplacianSegmentationLevelSetImageFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As with the other ITK level set segmentation filters, the terms of the
// LaplacianSegmentationLevelSetImageFilter level set equation can be
// weighted by scalars. For this application we will modify the relative
// weight of the propagation term. The curvature term weight is set to its
// default of $1$. The advection term is not used in this filter.
//
// \index{itk::Laplacian\-Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
laplacianSegmentation->SetCurvatureScaling( 1.0 );
laplacianSegmentation->SetPropagationScaling( ::atof(argv[6]) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The maximum number of iterations is set from the command line. It may
// not be desirable in some applications to run the filter to
// convergence. Only a few iterations may be required.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
laplacianSegmentation->SetMaximumRMSError( 0.002 );
laplacianSegmentation->SetNumberOfIterations( ::atoi(argv[8]) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, it is very important to specify the isovalue of the surface in
// the initial model input image. In a binary image, for example, the
// isosurface is found midway between the foreground and background values.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
laplacianSegmentation->SetIsoSurfaceValue( ::atof(argv[7]) );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are now connected in a pipeline indicated in
// Figure~\ref{fig:LaplacianSegmentationLevelSetImageFilterDiagram}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
diffusion->SetInput( reader1->GetOutput() );
laplacianSegmentation->SetInput( reader2->GetOutput() );
laplacianSegmentation->SetFeatureImage( diffusion->GetOutput() );
thresholder->SetInput( laplacianSegmentation->GetOutput() );
writer->SetInput( thresholder->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Invoking the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block to handle any exceptions that may be thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Print out some useful information
std::cout << std::endl;
std::cout << "Max. no. iterations: " << laplacianSegmentation->GetNumberOfIterations() << std::endl;
std::cout << "Max. RMS error: " << laplacianSegmentation->GetMaximumRMSError() << std::endl;
std::cout << std::endl;
std::cout << "No. elpased iterations: " << laplacianSegmentation->GetElapsedIterations() << std::endl;
std::cout << "RMS change: " << laplacianSegmentation->GetRMSChange() << std::endl;
// Write out the speed (propagation) image for parameter tuning purposes.
itk::ImageFileWriter< InternalImageType >::Pointer speedWriter
= itk::ImageFileWriter< InternalImageType >::New();
speedWriter->SetInput( laplacianSegmentation->GetSpeedImage() );
speedWriter->SetFileName( "speedImage.mha" );
speedWriter->Update();
// Software Guide : BeginLatex
//
// We can use this filter to make some subtle refinements to the ventricle
// segmentation from the example using the filter
// \doxygen{ThresholdSegmentationLevelSetImageFilter}. This application
// was run using \code{Examples/Data/BrainProtonDensitySlice.png} and
// \code{Examples/Data/VentricleModel.png} as inputs. We used $10$
// iterations of the diffusion filter with a conductance of 2.0. The
// propagation scaling was set to $1.0$ and the filter was run until
// convergence. Compare the results in the rightmost images of
// Figure~\ref{fig:LaplacianSegmentationLevelSetImageFilter} with the
// ventricle segmentation from
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilter} shown in the
// middle. Jagged edges are straightened and the small spur at the upper
// right-hand side of the mask has been removed.
//
// \begin{figure}
// \includegraphics[width=0.32\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.32\textwidth]{ThresholdSegmentationLevelSetImageFilterVentricle}
// \includegraphics[width=0.32\textwidth]{LaplacianSegmentationLevelSetImageFilterVentricle}
// \itkcaption[Segmentation results of LaplacianLevelSetImageFilter]{Results of
// applying LaplacianSegmentationLevelSetImageFilter to a prior ventricle
// segmentation. Shown from left to right are the original image, the
// prior segmentation of the ventricle from
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilter}, and the refinement of the
// prior using LaplacianSegmentationLevelSetImageFilter.}
// \label{fig:LaplacianSegmentationLevelSetImageFilter}
// \end{figure}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|