1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ThresholdSegmentationLevelSetImageFilterWhiteMatter.png}
// ARGUMENTS: 60 116 5 150 180
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ThresholdSegmentationLevelSetImageFilterVentricle.png}
// ARGUMENTS: 81 112 5 210 250
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainProtonDensitySlice.png}
// OUTPUTS: {ThresholdSegmentationLevelSetImageFilterGrayMatter.png}
// ARGUMENTS: 107 69 5 180 210
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// \index{itk::Threshold\-Segmentation\-Level\-Set\-Image\-Filter}
//
// The \doxygen{ThresholdSegmentationLevelSetImageFilter} is an extension of
// the threshold connected-component segmentation to the level set framework.
// The goal is to define a range of intensity values that classify the tissue
// type of interest and then base the propagation term on the level set
// equation for that intensity range. Using the level set approach, the
// smoothness of the evolving surface can be constrained to prevent some of
// the ``leaking'' that is common in connected-component schemes.
//
// The propagation term $P$ from Equation~\ref{eqn:LevelSetEquation} is
// calculated from the \code{FeatureImage} input $g$ with
// \code{UpperThreshold} $U$ and \code{LowerThreshold} $L$ according to the
// following formula.
//
// \begin{equation}
// \label{eqn:ThresholdSegmentationLevelSetImageFilterPropagationTerm}
// P(\mathbf{x}) = \left\{ \begin{array}{ll} g(\mathbf{x}) - L &
// \mbox{if $g(\mathbf{x}) < (U-L)/2 + L$} \\ U - g(\mathbf{x}) &
// \mbox{otherwise} \end{array} \right. \end{equation}
//
// Figure~\ref{fig:ThresholdSegmentationSpeedTerm} illustrates the propagation
// term function. Intensity values in $g$ between $L$ and $H$ yield positive
// values in $P$, while outside intensities yield negative values in $P$.
//
// \begin{figure} \center
// \includegraphics[width=0.8\textwidth]{ThresholdSegmentationLevelSetImageFilterCollaborationDiagram1}
// \itkcaption[ThresholdSegmentationLevelSetImageFilter collaboration
// diagram]{Collaboration diagram for the ThresholdSegmentationLevelSetImageFilter
// applied to a segmentation task.}
// \label{fig:ThresholdSegmentationLevelSetImageFilterDiagram}
// \end{figure}
//
// \begin{figure} \center
// \includegraphics[width=6.5cm]{ThresholdSegmentationLevelSetImageFilterFigure1}
// \itkcaption[Propagation term for threshold-based level set segmentation]
// {Propagation term for threshold-based level set segmentation.
// From Equation~\ref{eqn:ThresholdSegmentationLevelSetImageFilterPropagationTerm}.
// \label{fig:ThresholdSegmentationSpeedTerm}}
// \end{figure}
//
// The threshold segmentation filter expects two inputs. The first is an
// initial level set in the form of an \doxygen{Image}. The second input is
// the feature image $g$. For many applications, this filter requires little
// or no preprocessing of its input. Smoothing the input image is not
// usually required to produce reasonable solutions, though it may still be
// warranted in some cases.
//
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilterDiagram} shows how
// the image processing pipeline is constructed. The initial surface is
// generated using the fast marching filter. The output of the segmentation
// filter is passed to a \doxygen{BinaryThresholdImageFilter} to create a
// binary representation of the segmented object. Let's start by including the
// appropriate header file.
//
// Software Guide : EndLatex
#include "itkImage.h"
// Software Guide : BeginCodeSnippet
#include "itkThresholdSegmentationLevelSetImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkFastMarchingImageFilter.h"
#include "itkBinaryThresholdImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkZeroCrossingImageFilter.h"
int main( int argc, char *argv[] )
{
if( argc < 8 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0];
std::cerr << " inputImage outputImage";
std::cerr << " seedX seedY InitialDistance";
std::cerr << " LowerThreshold";
std::cerr << " UpperThreshold";
std::cerr << " [CurvatureScaling == 1.0]";
std::cerr << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We define the image type using a particular pixel type and
// dimension. In this case we will use 2D \code{float} images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef float InternalPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< InternalPixelType, Dimension > InternalImageType;
// Software Guide : EndCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
typedef itk::BinaryThresholdImageFilter<InternalImageType, OutputImageType>
ThresholdingFilterType;
ThresholdingFilterType::Pointer thresholder = ThresholdingFilterType::New();
thresholder->SetLowerThreshold( -1000.0 );
thresholder->SetUpperThreshold( 0.0 );
thresholder->SetOutsideValue( 0 );
thresholder->SetInsideValue( 255 );
typedef itk::ImageFileReader< InternalImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// We now declare the type of the \doxygen{FastMarchingImageFilter} that
// will be used to generate the initial level set in the form of a distance
// map.
//
typedef itk::FastMarchingImageFilter< InternalImageType, InternalImageType >
FastMarchingFilterType;
FastMarchingFilterType::Pointer fastMarching = FastMarchingFilterType::New();
// Software Guide : BeginLatex
//
// The following lines instantiate a
// ThresholdSegmentationLevelSetImageFilter using the \code{New()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ThresholdSegmentationLevelSetImageFilter< InternalImageType,
InternalImageType > ThresholdSegmentationLevelSetImageFilterType;
ThresholdSegmentationLevelSetImageFilterType::Pointer thresholdSegmentation =
ThresholdSegmentationLevelSetImageFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// For the ThresholdSegmentationLevelSetImageFilter, scaling
// parameters are used to balance the influence of the propagation
// (inflation) and the curvature (surface smoothing) terms from
// Equation~\ref{eqn:LevelSetEquation}. The advection term is not used in
// this filter. Set the terms with methods \code{SetPropagationScaling()}
// and \code{SetCurvatureScaling()}. Both terms are set to 1.0 in this
// example.
//
// \index{itk::Threshold\-Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetPropagationScaling()}
// \index{itk::Threshold\-Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
// \index{itk::Segmentation\-Level\-Set\-Image\-Filter!SetCurvatureScaling()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
thresholdSegmentation->SetPropagationScaling( 1.0 );
if ( argc > 8 )
{
thresholdSegmentation->SetCurvatureScaling( atof(argv[8]) );
}
else
{
thresholdSegmentation->SetCurvatureScaling( 1.0 );
}
// Software Guide : EndCodeSnippet
// The level set solver will stop if the convergence criteria has been
// reached or if the maximum number of iterations has elasped. The
// convergence criteria is defined in terms of the root mean squared (RMS)
// change in the level set function. When RMS change for an iteration is
// below a user-specified threshold, the solution is considered to have
// converged.
thresholdSegmentation->SetMaximumRMSError( 0.02 );
thresholdSegmentation->SetNumberOfIterations( 1200 );
// thresholdSegmentation->SetMaximumRMSError( atof(argv[8]) );
// thresholdSegmentation->SetNumberOfIterations( atoi(argv[9]) );
// Software Guide : BeginLatex
//
// The convergence criteria \code{MaximumRMSError} and
// \code{MaximumIterations} are set as in previous examples. We now set
// the upper and lower threshold values $U$ and $L$, and the isosurface
// value to use in the initial model.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
thresholdSegmentation->SetUpperThreshold( ::atof(argv[7]) );
thresholdSegmentation->SetLowerThreshold( ::atof(argv[6]) );
thresholdSegmentation->SetIsoSurfaceValue(0.0);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The filters are now connected in a pipeline indicated in
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilterDiagram}.
// Remember that before calling \code{Update()} on the file writer object,
// the fast marching filter must be initialized with the seed points and
// the output from the reader object. See previous examples and the
// source code for this section for details.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
thresholdSegmentation->SetInput( fastMarching->GetOutput() );
thresholdSegmentation->SetFeatureImage( reader->GetOutput() );
thresholder->SetInput( thresholdSegmentation->GetOutput() );
writer->SetInput( thresholder->GetOutput() );
// Software Guide : EndCodeSnippet
//
// The FastMarchingImageFilter requires the user to provide a seed
// point from which the level set will be generated. The user can actually
// pass not only one seed point but a set of them. Note the the
// FastMarchingImageFilter is used here only as a helper in the
// determination of an initial Level Set. We could have used the
// \doxygen{DanielssonDistanceMapImageFilter} in the same way.
//
// The seeds are passed stored in a container. The type of this
// container is defined as \code{NodeContainer} among the
// FastMarchingImageFilter traits.
//
typedef FastMarchingFilterType::NodeContainer NodeContainer;
typedef FastMarchingFilterType::NodeType NodeType;
NodeContainer::Pointer seeds = NodeContainer::New();
InternalImageType::IndexType seedPosition;
seedPosition[0] = atoi( argv[3] );
seedPosition[1] = atoi( argv[4] );
// Nodes are created as stack variables and initialized with a value and an
// \doxygen{Index} position. Note that here we assign the value of minus the
// user-provided distance to the unique node of the seeds passed to the
// FastMarchingImageFilter. In this way, the value will increment
// as the front is propagated, until it reaches the zero value corresponding
// to the contour. After this, the front will continue propagating until it
// fills up the entire image. The initial distance is taken here from the
// command line arguments. The rule of thumb for the user is to select this
// value as the distance from the seed points at which he want the initial
// contour to be.
const double initialDistance = atof( argv[5] );
NodeType node;
const double seedValue = - initialDistance;
node.SetValue( seedValue );
node.SetIndex( seedPosition );
//
// The list of nodes is initialized and then every node is inserted using
// the \code{InsertElement()}.
seeds->Initialize();
seeds->InsertElement( 0, node );
// The set of seed nodes is passed now to the
// FastMarchingImageFilter with the method
// \code{SetTrialPoints()}.
fastMarching->SetTrialPoints( seeds );
//
// Since the FastMarchingImageFilter is used here just as a
// Distance Map generator. It does not require a speed image as input.
// Instead the constant value $1.0$ is passed using the
// \code{SetSpeedConstant()} method.
fastMarching->SetSpeedConstant( 1.0 );
// The FastMarchingImageFilter requires the user to specify the size of the
// image to be produced as output. This is done using the
// \code{SetOutputRegion()} method. Note that the size is obtained here from
// the output image of the smoothing filter. The size of this image is valid
// only after the \code{Update()} methods of this filter has been called
// directly or indirectly. Other image parameters such as Origin, Spacing
// and Direction are set in a similar manner.
// Software Guide : BeginLatex
//
// Invoking the \code{Update()} method on the writer triggers the
// execution of the pipeline. As usual, the call is placed in a
// \code{try/catch} block should any errors occur or exceptions be thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
reader->Update();
const InternalImageType * inputImage = reader->GetOutput();
fastMarching->SetOutputRegion( inputImage->GetBufferedRegion() );
fastMarching->SetOutputSpacing( inputImage->GetSpacing() );
fastMarching->SetOutputOrigin( inputImage->GetOrigin() );
fastMarching->SetOutputDirection( inputImage->GetDirection() );
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Print out some useful information
std::cout << std::endl;
std::cout << "Max. no. iterations: " << thresholdSegmentation->GetNumberOfIterations() << std::endl;
std::cout << "Max. RMS error: " << thresholdSegmentation->GetMaximumRMSError() << std::endl;
std::cout << std::endl;
std::cout << "No. elpased iterations: " << thresholdSegmentation->GetElapsedIterations() << std::endl;
std::cout << "RMS change: " << thresholdSegmentation->GetRMSChange() << std::endl;
// We write out some intermediate images for debugging. These images can
// help tune parameters.
//
typedef itk::ImageFileWriter< InternalImageType > InternalWriterType;
InternalWriterType::Pointer mapWriter = InternalWriterType::New();
mapWriter->SetInput( fastMarching->GetOutput() );
mapWriter->SetFileName("fastMarchingImage.mha");
mapWriter->Update();
InternalWriterType::Pointer speedWriter = InternalWriterType::New();
speedWriter->SetInput( thresholdSegmentation->GetSpeedImage() );
speedWriter->SetFileName("speedTermImage.mha");
speedWriter->Update();
// Software Guide : BeginLatex
//
// Let's run this application with the same data and parameters as the
// example given for \doxygen{ConnectedThresholdImageFilter} in
// Section~\ref{sec:ConnectedThreshold}. We will use a value of 5 as the
// initial distance of the surface from the seed points. The algorithm is
// relatively insensitive to this initialization. Compare the results in
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilter} with those in
// Figure~\ref{fig:ConnectedThresholdOutput}. Notice how the smoothness
// constraint on the surface prevents leakage of the segmentation into
// both ventricles, but also localizes the segmentation to a smaller
// portion of the gray matter.
//
// \begin{figure}
// \includegraphics[width=0.24\textwidth]{BrainProtonDensitySlice}
// \includegraphics[width=0.24\textwidth]{ThresholdSegmentationLevelSetImageFilterWhiteMatter}
// \includegraphics[width=0.24\textwidth]{ThresholdSegmentationLevelSetImageFilterVentricle}
// \includegraphics[width=0.24\textwidth]{ThresholdSegmentationLevelSetImageFilterGrayMatter}
// \itkcaption[ThresholdSegmentationLevelSet segmentations]{Images
// generated by the segmentation process based on the
// ThresholdSegmentationLevelSetImageFilter. From left to right:
// segmentation of the left ventricle, segmentation of the right ventricle,
// segmentation of the white matter, attempt of segmentation of the gray
// matter. The parameters used in this segmentations are presented in
// Table~\ref{tab:ThresholdSegmentationLevelSetImageFilter}.}
// \label{fig:ThresholdSegmentationLevelSetImageFilter} \end{figure}
//
// \begin{table}
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|c|}
// \hline
// Structure & Seed Index & Lower & Upper & Output Image \\ \hline
// White matter & $(60,116)$ & 150 & 180 & Second from left \\ \hline
// Ventricle & $(81,112)$ & 210 & 250 & Third from left \\ \hline
// Gray matter & $(107,69)$ & 180 & 210 & Fourth from left \\ \hline
// \end{tabular}
// \itkcaption[ThresholdSegmentationLevelSet segmentation parameters]
// {Segmentation results using the
// ThresholdSegmentationLevelSetImageFilter for various seed points. The
// resulting images are shown in
// Figure~\ref{fig:ThresholdSegmentationLevelSetImageFilter}
// \label{tab:ThresholdSegmentationLevelSetImageFilter}.}\end{center}
// \end{table}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|