1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {VisibleWomanEyeSlice.png}
// OUTPUTS: {VectorConfidenceConnectedOutput1.png}
// ARGUMENTS: 70 120 7 1
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {VisibleWomanEyeSlice.png}
// OUTPUTS: {VectorConfidenceConnectedOutput2.png}
// ARGUMENTS: 23 93 7 1
// Software Guide : EndCommandLineArgs
// Software Guide : BeginCommandLineArgs
// INPUTS: {VisibleWomanEyeSlice.png}
// OUTPUTS: {VectorConfidenceConnectedOutput3.png}
// ARGUMENTS: 66 66 3 1
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example illustrates the use of the confidence connected concept
// applied to images with vector pixel types. The confidence connected
// algorithm is implemented for vector images in the class
// \doxygen{VectorConfidenceConnected}. The basic difference between the
// scalar and vector version is that the vector version uses the covariance
// matrix instead of a variance, and a vector mean instead of a scalar mean.
// The membership of a vector pixel value to the region is measured using the
// Mahalanobis distance as implemented in the class
// \subdoxygen{Statistics}{MahalanobisDistanceThresholdImageFunction}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVectorConfidenceConnectedImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRGBPixel.h"
int main( int argc, char *argv[] )
{
if( argc < 7 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0]
<< " inputImage outputImage"
<< " seedX seedY"
<< " multiplier iterations" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// We now define the image type using a particular pixel type and
// dimension. In this case the \code{float} type is used for the pixels
// due to the requirements of the smoothing filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int Dimension = 2;
typedef unsigned char PixelComponentType;
typedef itk::RGBPixel< PixelComponentType > InputPixelType;
typedef itk::Image< InputPixelType, Dimension > InputImageType;
// Software Guide : EndCodeSnippet
typedef unsigned char OutputPixelType;
typedef itk::Image< OutputPixelType, Dimension > OutputImageType;
// We instantiate reader and writer types
//
typedef itk::ImageFileReader< InputImageType > ReaderType;
typedef itk::ImageFileWriter< OutputImageType > WriterType;
ReaderType::Pointer reader = ReaderType::New();
WriterType::Pointer writer = WriterType::New();
reader->SetFileName( argv[1] );
writer->SetFileName( argv[2] );
// Software Guide : BeginLatex
//
// We now declare the type of the region-growing filter. In this case it
// is the \doxygen{VectorConfidenceConnectedImageFilter}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::VectorConfidenceConnectedImageFilter< InputImageType,
OutputImageType > ConnectedFilterType;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we construct one filter of this class using the \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
ConnectedFilterType::Pointer confidenceConnected
= ConnectedFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we create a simple, linear data processing pipeline.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetInput( reader->GetOutput() );
writer->SetInput( confidenceConnected->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \code{VectorConfidenceConnectedImageFilter} requires two
// parameters. First, the multiplier factor $f$ defines how large the
// range of intensities will be. Small values of the multiplier will
// restrict the inclusion of pixels to those having similar intensities to
// those already in the current region. Larger values of the multiplier
// relax the accepting condition and result in more generous growth of the
// region. Values that are too large will cause the region to grow into
// neighboring regions which may actually belong to separate anatomical
// structures.
//
// \index{itk::Vector\-Confidence\-Connected\-Image\-Filter!SetMultiplier()}
//
// Software Guide : EndLatex
const double multiplier = atof( argv[5] );
// Software Guide : BeginCodeSnippet
confidenceConnected->SetMultiplier( multiplier );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The number of iterations is typically determined based on the
// homogeneity of the image intensity representing the anatomical
// structure to be segmented. Highly homogeneous regions may only require
// a couple of iterations. Regions with ramp effects, like MRI images with
// inhomogeneous fields, may require more iterations. In practice, it seems
// to be more relevant to carefully select the multiplier factor than the
// number of iterations. However, keep in mind that there is no reason to
// assume that this algorithm should converge to a stable region. It is
// possible that by letting the algorithm run for more iterations the
// region will end up engulfing the entire image.
//
// \index{itk::Vector\-Confidence\-Connected\-Image\-Filter!SetNumberOfIterations()}
//
// Software Guide : EndLatex
const unsigned int iterations = atoi( argv[6] );
// Software Guide : BeginCodeSnippet
confidenceConnected->SetNumberOfIterations( iterations );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this filter is a binary image with zero-value pixels
// everywhere except on the extracted region. The intensity value to be
// put inside the region is selected with the method
// \code{SetReplaceValue()}.
//
// \index{itk::Vector\-Confidence\-Connected\-Image\-Filter!SetReplaceValue()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetReplaceValue( 255 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The initialization of the algorithm requires the user to provide a seed
// point. This point should be placed in a \emph{typical} region of the
// anatomical structure to be segmented. A small neighborhood around the
// seed point will be used to compute the initial mean and standard
// deviation for the inclusion criterion. The seed is passed in the form
// of an \doxygen{Index} to the \code{SetSeed()} method.
//
// \index{itk::Vector\-Confidence\-Connected\-Image\-Filter!SetSeed()}
// \index{itk::Vector\-Confidence\-Connected\-Image\-Filter!SetInitialNeighborhoodRadius()}
//
// Software Guide : EndLatex
InputImageType::IndexType index;
index[0] = atoi( argv[3] );
index[1] = atoi( argv[4] );
// Software Guide : BeginCodeSnippet
confidenceConnected->SetSeed( index );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The size of the initial neighborhood around the seed is defined with the
// method \code{SetInitialNeighborhoodRadius()}. The neighborhood will be
// defined as an $N$-Dimensional rectangular region with $2r+1$ pixels on
// the side, where $r$ is the value passed as initial neighborhood radius.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
confidenceConnected->SetInitialNeighborhoodRadius( 3 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The invocation of the \code{Update()} method on the writer triggers the
// execution of the pipeline. It is usually wise to put update calls in a
// \code{try/catch} block in case errors occur and exceptions are thrown.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excep )
{
std::cerr << "Exception caught !" << std::endl;
std::cerr << excep << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Now let's run this example using as input the image
// \code{VisibleWomanEyeSlice.png} provided in the directory
// \code{Examples/Data}. We can easily segment the major anatomical
// structures by providing seeds in the appropriate locations. For example,
//
// \begin{center}
// \begin{tabular}{|l|c|c|c|c|}
// \hline
// Structure & Seed Index & Multiplier & Iterations & Output Image \\ \hline
// Rectum & $(70,120)$ & 7 & 1 & Second from left in Figure \ref{fig:VectorConfidenceConnectedOutput} \\ \hline
// Rectum & $(23, 93)$ & 7 & 1 & Third from left in Figure \ref{fig:VectorConfidenceConnectedOutput} \\ \hline
// Vitreo & $(66, 66)$ & 3 & 1 & Fourth from left in Figure \ref{fig:VectorConfidenceConnectedOutput} \\ \hline
// \end{tabular}
// \end{center}
//
// \begin{figure} \center
// \includegraphics[width=0.24\textwidth]{VisibleWomanEyeSlice}
// \includegraphics[width=0.24\textwidth]{VectorConfidenceConnectedOutput1}
// \includegraphics[width=0.24\textwidth]{VectorConfidenceConnectedOutput2}
// \includegraphics[width=0.24\textwidth]{VectorConfidenceConnectedOutput3}
// \itkcaption[VectorConfidenceConnected segmentation results]{Segmentation results of
// the VectorConfidenceConnected filter for various seed points.}
// \label{fig:VectorConfidenceConnectedOutput}
// \end{figure}
//
// The coloration of muscular tissue makes it easy to distinguish them from
// the surrounding anatomical structures. The optic vitrea on the other hand
// has a coloration that is not very homogeneous inside the eyeball and
// does not facilitate a full segmentation based only on color.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The values of the final mean vector and covariance matrix used for the
// last iteration can be queried using the methods \code{GetMean()} and
// \code{GetCovariance()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef ConnectedFilterType::MeanVectorType MeanVectorType;
typedef ConnectedFilterType::CovarianceMatrixType CovarianceMatrixType;
const MeanVectorType & mean = confidenceConnected->GetMean();
const CovarianceMatrixType & covariance
= confidenceConnected->GetCovariance();
std::cout << "Mean vector = " << mean << std::endl;
std::cout << "Covariance matrix = " << covariance << std::endl;
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|