1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{itk::SpatialObjectTransforms} This example describes the different
// transformations associated with a spatial object.
//
//
// \begin{figure} \center
// \includegraphics[width=0.9\textwidth]{SpatialObjectTransforms}
// \itkcaption[SpatialObject Transformations]{Set of transformations associated
// with a Spatial Object}
// \label{fig:SpatialObjectTransforms}
// \end{figure}
//
// Figure~\ref{fig:SpatialObjectTransforms} shows our set of transformations.
//
// Software Guide : EndLatex
#include "itkSpatialObject.h"
int main( int , char *[] )
{
// Software Guide : BeginLatex
//
// Like the first example, we create two spatial objects and give them the
// names \code{First Object} and \code{Second Object}, respectively.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::SpatialObject<2> SpatialObjectType;
typedef SpatialObjectType::TransformType TransformType;
SpatialObjectType::Pointer object1 = SpatialObjectType ::New();
object1->GetProperty()->SetName("First Object");
SpatialObjectType::Pointer object2 = SpatialObjectType ::New();
object2->GetProperty()->SetName("Second Object");
object1->AddSpatialObject(object2);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Instances of \doxygen{SpatialObject} maintain three transformations
// internally that can be used to compute the position and orientation of
// data and objects. These transformations are: an IndexToObjectTransform,
// an ObjectToParentTransform, and an ObjectToWorldTransform. As a
// convenience to the user, the global transformation IndexToWorldTransform
// and its inverse, WorldToIndexTransform, are also maintained by the
// class. Methods are provided by SpatialObject to access and manipulate
// these transforms.
//
// The two main transformations, IndexToObjectTransform and
// ObjectToParentTransform, are applied successively. ObjectToParentTransform
// is applied to children.
//
// The IndexToObjectTransform transforms points from the internal data
// coordinate system of the object (typically the indices of the image from
// which the object was defined) to ``physical" space (which accounts for the
// spacing, orientation, and offset of the indices).
//
// The ObjectToParentTransform transforms points from the object-specific
// ``physical" space to the ``physical" space of its parent object. As one can see from the
// figure ~\ref{fig:SpatialObjectTransforms}, the ObjectToParentTransform is composed of two
// transforms: ObjectToNodeTransform and NodeToParentNodeTransform. The ObjectToNodeTransform
// is not applied to the children, but the NodeToParentNodeTransform is. Therefore, if one
// sets the ObjectToParentTransform, the NodeToParentNodeTransform is actually set.
//
// The ObjectToWorldTransform maps points from the reference system of the SpatialObject
// into the global coordinate system. This is useful when the position of the object is known
// only in the global coordinate frame. Note that by setting this transform,
// the ObjectToParent transform is recomputed.
//
// These transformations use the
// \doxygen{FixedCenterOfRotationAffineTransform}. They are created in the
// constructor of the spatial \doxygen{SpatialObject}.
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// First we define an index scaling factor of 2 for the object2.
// This is done by setting the Scale of the IndexToObjectTransform.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double scale[2];
scale[0]=2;
scale[1]=2;
object2->GetIndexToObjectTransform()->SetScale(scale);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next, we apply an offset on the \code{ObjectToParentTransform} of the child object.
// Therefore, object2 is now translated by a vector [4,3] regarding to its
// parent.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OffsetType Object2ToObject1Offset;
Object2ToObject1Offset[0] = 4;
Object2ToObject1Offset[1] = 3;
object2->GetObjectToParentTransform()->SetOffset(Object2ToObject1Offset);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// To realize the previous operations on the transformations, we should
// invoke the \code{ComputeObjectToWorldTransform()} that recomputes all
// dependent transformations.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
object2->ComputeObjectToWorldTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now display the ObjectToWorldTransform for both objects. One
// should notice that the FixedCenterOfRotationAffineTransform derives from
// \doxygen{AffineTransform} and therefore the only valid members of the
// transformation are a Matrix and an Offset. For instance, when we invoke the
// \code{Scale()} method the internal Matrix is recomputed to
// reflect this change.
//
// The FixedCenterOfRotationAffineTransform performs the following
// computation
//
// \begin{equation}
// X' = R \cdot \left( S \cdot X - C \right) + C + V
// \end{equation}
//
// Where $R$ is the rotation matrix, $S$ is a scaling factor, $C$ is the center
// of rotation and $V$ is a translation vector or offset.
// Therefore the affine matrix $M$ and the affine offset $T$ are defined as:
//
// \begin{equation}
// M = R \cdot S
// \end{equation}
// \begin{equation}
// T = C + V - R \cdot C
// \end{equation}
//
// This means that \code{GetScale()} and \code{GetOffset()}
// as well as the \code{GetMatrix()} might not be set to the
// expected value, especially if the transformation results from a
// composition with another transformation since the composition is done
// using the Matrix and the Offset of the affine transformation.
//
// Next, we show the two affine transformations corresponding to the two
// objects.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "object2 IndexToObject Matrix: " << std::endl;
std::cout << object2->GetIndexToObjectTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToObject Offset: ";
std::cout << object2->GetIndexToObjectTransform()->GetOffset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;
std::cout << object2->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: ";
std::cout << object2->GetIndexToWorldTransform()->GetOffset() << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Then, we decide to translate the first object which is the parent of the
// second by a vector [3,3]. This is still done by setting the offset of the
// ObjectToParentTransform. This can also be done by setting the
// ObjectToWorldTransform because the first object does not have any parent
// and therefore is attached to the world coordinate frame.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
TransformType::OffsetType Object1ToWorldOffset;
Object1ToWorldOffset[0] = 3;
Object1ToWorldOffset[1] = 3;
object1->GetObjectToParentTransform()->SetOffset(Object1ToWorldOffset);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Next we invoke \code{ComputeObjectToWorldTransform()} on the modified
// object. This will propagate the transformation through all its children.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
object1->ComputeObjectToWorldTransform();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.5\textwidth]{SpatialObjectExampleTransforms}
// \itkcaption[SpatialObject Transform Computations]{Physical positions of the
// two objects in the world frame (shapes are merely for illustration
// purposes).}
// \label{fig:SpatialObjectExampleTransforms}
// \end{figure}
//
// Figure~\ref{fig:SpatialObjectExampleTransforms} shows our set of transformations.
//
// Finally, we display the resulting affine transformations.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::cout << "object1 IndexToWorld Matrix: " << std::endl;
std::cout << object1->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object1 IndexToWorld Offset: ";
std::cout << object1->GetIndexToWorldTransform()->GetOffset() << std::endl;
std::cout << "object2 IndexToWorld Matrix: " << std::endl;
std::cout << object2->GetIndexToWorldTransform()->GetMatrix() << std::endl;
std::cout << "object2 IndexToWorld Offset: ";
std::cout << object2->GetIndexToWorldTransform()->GetOffset() << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output of this second example looks like the following:
// \small
// \begin{verbatim}
//object2 IndexToObject Matrix:
//2 0
//0 2
//object2 IndexToObject Offset: 0 0
//object2 IndexToWorld Matrix:
//2 0
//0 2
//object2 IndexToWorld Offset: 4 3
//object1 IndexToWorld Matrix:
//1 0
//0 1
//object1 IndexToWorld Offset: 3 3
//object2 IndexToWorld Matrix:
//2 0
//0 2
//object2 IndexToWorld Offset: 7 6
// \end{verbatim}
// \normalsize
//
// Software Guide : EndLatex
return EXIT_FAILURE;
}
|