File: BayesianClassifier.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (151 lines) | stat: -rw-r--r-- 5,560 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// This example demostrates usage of the itk::BayesianClassifierImageFilter
// The input to this example is an itk::VectorImage that represents pixel
// memberships to 'n' classes.
//
// This image is conveniently generated by the BayesianClassifierInitializer.cxx
// example.
//
// The output of the filter is a label map (an image of unsigned char's) with
// pixel values indicating the classes they correspond to. Pixels with intensity 0
// belong to the 0th class, 1 belong to the 1st class etc.... The classification
// is done by applying a Maximum decision rule to the posterior image.
//
// The filter allows you to specify a prior image as well, (although this is not
// done in this example). The prior image, if specified will be a itk::VectorImage
// with as many components as the number of classes. The posterior image is
// then generated by multiplying the prior image with the membership image. If
// the prior image is not specified, the posterior image is the same as the
// membership image.
//
// The filter optionally accepts a smoothingIterations argument. See the
// itk::BayesianClassifierImageFilter for details on how this affects the
// classification. The philosophy is that the filter allows you to iteratively
// smooth the posteriors prior to applying the decision rule. It is hoped
// that this would yield a better classification. The user will need to plug
// in his own smoothing filter. In this case, we specify a
// GradientAnisotropicDiffusionImageFilter.
//
// Example args:
//   Memberships.mhd Labelmap.png  3

#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkBayesianClassifierImageFilter.h"
#include "itkImageFileWriter.h"
#include "itkGradientAnisotropicDiffusionImageFilter.h"
#include "itkRescaleIntensityImageFilter.h"

int main(int argc, char* argv[] )
{

  if( argc < 3 )
    {
    std::cerr << "Usage: " << std::endl;
    std::cerr << argv[0] << " inputImageFile outputImageFile [smoothingIterations]" << std::endl;
    return EXIT_FAILURE;
    }

  // input parameters
  const char * membershipImageFileName  = argv[1];
  const char * labelMapImageFileName    = argv[2];

  // setup reader
  const unsigned int                                    Dimension = 2;
  typedef float                                         InputPixelType;
  typedef itk::VectorImage< InputPixelType, Dimension > InputImageType;
  typedef itk::ImageFileReader< InputImageType >        ReaderType;

  ReaderType::Pointer reader = ReaderType::New();
  reader->SetFileName( membershipImageFileName );

  typedef unsigned char  LabelType;
  typedef float          PriorType;
  typedef float          PosteriorType;


  typedef itk::BayesianClassifierImageFilter<
                              InputImageType,LabelType,
                              PosteriorType,PriorType >   ClassifierFilterType;

  ClassifierFilterType::Pointer filter = ClassifierFilterType::New();


  filter->SetInput( reader->GetOutput() );

  if( argv[3] )
    {
    filter->SetNumberOfSmoothingIterations( atoi( argv[3] ));
    typedef ClassifierFilterType::ExtractedComponentImageType ExtractedComponentImageType;
    typedef itk::GradientAnisotropicDiffusionImageFilter<
      ExtractedComponentImageType, ExtractedComponentImageType >  SmoothingFilterType;
    SmoothingFilterType::Pointer smoother = SmoothingFilterType::New();
    smoother->SetNumberOfIterations( 1 );
    smoother->SetTimeStep( 0.125 );
    smoother->SetConductanceParameter( 3 );
    filter->SetSmoothingFilter( smoother );
    }


  // SET FILTER'S PRIOR PARAMETERS
  // do nothing here to default to uniform priors
  // otherwise set the priors to some user provided values

  //
  // Setup writer.. Rescale the label map to the dynamic range of the
  // datatype and write it
  //
  typedef ClassifierFilterType::OutputImageType      ClassifierOutputImageType;
  typedef itk::Image< unsigned char, Dimension >     OutputImageType;
  typedef itk::RescaleIntensityImageFilter<
    ClassifierOutputImageType, OutputImageType >   RescalerType;
  RescalerType::Pointer rescaler = RescalerType::New();
  rescaler->SetInput( filter->GetOutput() );
  rescaler->SetOutputMinimum( 0 );
  rescaler->SetOutputMaximum( 255 );

  typedef itk::ImageFileWriter< OutputImageType >    WriterType;

  WriterType::Pointer writer = WriterType::New();
  writer->SetFileName( labelMapImageFileName );

  //
  // Write labelmap to file
  //
  writer->SetInput( rescaler->GetOutput() );

  try
    {
    writer->Update();
    }
  catch( itk::ExceptionObject & excp )
    {
    std::cerr << "Exception caught: " << std::endl;
    std::cerr << excp << std::endl;
    return EXIT_FAILURE;
    }

  // Testing print
  filter->Print( std::cout );
  std::cout << "Test passed." << std::endl;

  return EXIT_SUCCESS;

}