1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
//
// This is an example of the itk::BayesianClassifierInitializationImageFilter.
// The example's goal is to serve as an initializer for the
// BayesianClassifier.cxx example also found in this directory.
//
// This example takes an input image (to be classified) and generates membership
// images. The membership images determine the degree to which each pixel
// belongs to a class.
//
// The membership image generated by the filter is an
// itk::VectorImage, (with pixels organized as follows: For a 2D image,
// its essentially a 3D array on file with DataType[y][x][c] where c is the
// number of classes and DataType is the template parameter of the filter
// (defaults to float). For a 3D image, it will be organized as
// Datatype[z][y][x][c])
//
// The example also optionally takes in two more arguments, as a convenience to
// the user. These arguements extract the specified component 'c' from the
// membership image and rescale, so the user can fire up a typical image
// viewer and see the relative pixel memberships to class 'c'.
//
// Example args:
// BrainProtonDensitySlice.png Memberships.mhd 4 2 Class2.png
//
// Here Memberships.mhd will be a 2x2x4 image containing pixel memberships
// Class2.png shows pixel memberships to the third class, (rescaled for display)
//
// Notes:
// The default behaviour of the filter is to generate memberships by centering
// gaussian density functions around K-means of the pixel intensities in the
// image. The filter allows you to specify your own membership functions as well.
//
#include "itkImage.h"
#include "itkBayesianClassifierInitializationImageFilter.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkRescaleIntensityImageFilter.h"
#include "itkImageRegionConstIterator.h"
int main(int argc, char *argv[])
{
const unsigned int Dimension = 2;
if( argc < 4 )
{
std::cerr << "Usage arguments: InputImage MembershipImage numberOfClasses [componentToExtract ExtractedImage]" << std::endl;
std::cerr << " The MembershipImage image written is a VectorImage, ( an image with multiple components ) ";
std::cerr << "Given that most viewers can't see vector images, we will optionally extract a component and ";
std::cerr << "write it out as a scalar image as well." << std::endl;
return EXIT_FAILURE;
}
typedef itk::Image< unsigned char, Dimension > ImageType;
typedef itk::BayesianClassifierInitializationImageFilter< ImageType >
BayesianInitializerType;
BayesianInitializerType::Pointer bayesianInitializer
= BayesianInitializerType::New();
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
bayesianInitializer->SetInput( reader->GetOutput() );
bayesianInitializer->SetNumberOfClasses( atoi( argv[3] ) );
// TODO add test where we specify membership functions
typedef itk::ImageFileWriter<
BayesianInitializerType::OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( bayesianInitializer->GetOutput() );
writer->SetFileName( argv[2] );
try
{
bayesianInitializer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
if( argv[4] && argv[5] )
{
typedef BayesianInitializerType::OutputImageType MembershipImageType;
typedef itk::Image< MembershipImageType::InternalPixelType,
Dimension > ExtractedComponentImageType;
ExtractedComponentImageType::Pointer extractedComponentImage =
ExtractedComponentImageType::New();
extractedComponentImage->CopyInformation(
bayesianInitializer->GetOutput() );
extractedComponentImage->SetBufferedRegion( bayesianInitializer->GetOutput()->GetBufferedRegion() );
extractedComponentImage->SetRequestedRegion( bayesianInitializer->GetOutput()->GetRequestedRegion() );
extractedComponentImage->Allocate();
typedef itk::ImageRegionConstIterator< MembershipImageType > ConstIteratorType;
typedef itk::ImageRegionIterator< ExtractedComponentImageType > IteratorType;
ConstIteratorType cit( bayesianInitializer->GetOutput(),
bayesianInitializer->GetOutput()->GetBufferedRegion() );
IteratorType it( extractedComponentImage,
extractedComponentImage->GetLargestPossibleRegion() );
const unsigned int componentToExtract = atoi( argv[4] );
cit.GoToBegin();
it.GoToBegin();
while( !cit.IsAtEnd() )
{
it.Set(cit.Get()[componentToExtract]);
++it;
++cit;
}
// Write out the rescaled extracted component
typedef itk::Image< unsigned char, Dimension > OutputImageType;
typedef itk::RescaleIntensityImageFilter<
ExtractedComponentImageType, OutputImageType > RescalerType;
RescalerType::Pointer rescaler = RescalerType::New();
rescaler->SetInput( extractedComponentImage );
rescaler->SetOutputMinimum( 0 );
rescaler->SetOutputMaximum( 255 );
typedef itk::ImageFileWriter< OutputImageType
> ExtractedComponentWriterType;
ExtractedComponentWriterType::Pointer
rescaledImageWriter = ExtractedComponentWriterType::New();
rescaledImageWriter->SetInput( rescaler->GetOutput() );
rescaledImageWriter->SetFileName( argv[5] );
rescaledImageWriter->Update();
}
return EXIT_SUCCESS;
}
|