1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// By now, you are probably thinking that the statistics framework in ITK is
// too complex for simply computing histograms from images. Here we illustrate
// that the benefit for this complexity is the power that these methods provide
// for dealing with more complex and realistic uses of image statistics than the
// trivial 256-bin histogram of 8-bit images that most software packages
// provide. One of such cases is the computation of histograms from
// multi-component images such as Vector images and color images.
//
// This example shows how to compute the histogram of an RGB image by using the
// helper class \code{ImageToHistogramFilter}. In this first example we
// compute the histogram of each channel independently.
//
// We start by including the header of the
// \subdoxygen{Statistics}{ImageToHistogramFilter}, as well as the headers
// for the image class and the RGBPixel class.
//
// \index{itk::Statistics::ImageToHistogramFilter!header}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImageToHistogramFilter.h"
#include "itkImage.h"
#include "itkRGBPixel.h"
// Software Guide : EndCodeSnippet
#include "itkImageFileReader.h"
int main( int argc, char * argv [] )
{
if( argc < 2 )
{
std::cerr << "Missing command line arguments" << std::endl;
std::cerr << "Usage : ImageHistogram3 inputRGBImageFileName " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// The type of the RGB image is defined by first instantiating a RGBPixel and
// then using the image dimension specification.
//
// \index{itk::Statistics!Color Images}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char PixelComponentType;
typedef itk::RGBPixel< PixelComponentType > RGBPixelType;
const unsigned int Dimension = 2;
typedef itk::Image< RGBPixelType, Dimension > RGBImageType;
// Software Guide : EndCodeSnippet
typedef itk::ImageFileReader< RGBImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// Using the RGB image type we can instantiate the type of the corresponding
// histogram filter and construct one filter by invoking its \code{New()}
// method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::ImageToHistogramFilter<
RGBImageType > HistogramFilterType;
HistogramFilterType::Pointer histogramFilter =
HistogramFilterType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The parameters of the histogram must be defined now. Probably the most
// important one is the arrangement of histogram bins. This is provided to the
// histogram through a size array. The type of the array can be taken from the
// traits of the \code{HistogramFilterType} type. We create one instance of
// the size object and fill in its content. In this particular case, the three
// components of the size array will correspond to the number of bins used for
// each one of the RGB components in the color image. The following lines show
// how to define a histogram on the red component of the image while
// disregarding the green and blue components.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HistogramFilterType::HistogramSizeType SizeType;
SizeType size( 3 );
size[0] = 255; // number of bins for the Red channel
size[1] = 1; // number of bins for the Green channel
size[2] = 1; // number of bins for the Blue channel
histogramFilter->SetHistogramSize( size );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The marginal scale must be defined in the filter. This will determine the
// precision in the assignment of values to the histogram bins.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramFilter->SetMarginalScale( 10.0 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, we must specify the upper and lower bounds for the histogram. This
// can either be done manually using the \code{SetHistogramBinMinimum()} and
// \code{SetHistogramBinMaximum()} methods or it can be done automatically by
// calling \code{SetHistogramAutoMinimumMaximum( true )}. Here we use the
// manual method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
HistogramFilterType::HistogramMeasurementVectorType lowerBound( 3 );
HistogramFilterType::HistogramMeasurementVectorType upperBound( 3 );
lowerBound[0] = 0;
lowerBound[1] = 0;
lowerBound[2] = 0;
upperBound[0] = 256;
upperBound[1] = 256;
upperBound[2] = 256;
histogramFilter->SetHistogramBinMinimum( lowerBound );
histogramFilter->SetHistogramBinMaximum( upperBound );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The input of the filter is taken from an image reader, and the
// computation of the histogram is triggered by invoking the \code{Update()}
// method of the filter.
//
// \index{itk::Statistics::ImageToHistogramFilter!Update()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
histogramFilter->SetInput( reader->GetOutput() );
histogramFilter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We can now access the results of the histogram computation by declaring a
// pointer to histogram and getting its value from the filter using the
// \code{GetOutput()} method. Note that here we use a \code{const
// HistogramType} pointer instead of a const smart pointer because we are sure
// that the filter is not going to be destroyed while we access the values
// of the histogram. Depending on what you are doing, it may be safer to assign
// the histogram to a const smart pointer as shown in previous examples.
//
// \index{itk::Statistics::ImageTohistogramFilter!GetOutput()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef HistogramFilterType::HistogramType HistogramType;
const HistogramType * histogram = histogramFilter->GetOutput();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Just for the sake of exercising the experimental method~\cite{Popper2002}, we
// verify that the resulting histogram actually have the size that we requested
// when we configured the filter. This can be done by invoking the
// \code{Size()} method of the histogram and printing out the result.
//
// \index{itk::Statistics::Histogram!Size()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const unsigned int histogramSize = histogram->Size();
std::cout << "Histogram size " << histogramSize << std::endl;
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Strictly speaking, the histogram computed here is the joint histogram of the
// three RGB components. However, given that we set the resolution of the green
// and blue channels to be just one bin, the histogram is in practice
// representing just the red channel. In the general case, we can alway access
// the frequency of a particular channel in a joint histogram, thanks to the
// fact that the histogram class offers a \code{GetFrequency()} method that
// accepts a channel as argument. This is illustrated in the following lines of
// code.
//
// \index{itk::Statistics::Histogram!GetFrequency()}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
unsigned int channel = 0; // red channel
std::cout << "Histogram of the red component" << std::endl;
for (unsigned int bin=0; bin < histogramSize; ++bin)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency( bin, channel ) << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// In order to reinforce the concepts presented above, we modify now the setup
// of the histogram filter in order to compute the histogram of the green
// channel instead of the red one. This is done by simply changing the number
// of bins desired on each channel and invoking the computation of the
// filter again by calling the \code{Update()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
size[0] = 1; // number of bins for the Red channel
size[1] = 255; // number of bins for the Green channel
size[2] = 1; // number of bins for the Blue channel
histogramFilter->SetHistogramSize( size );
histogramFilter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The result can be verified now by setting the desired channel to green and
// invoking the \code{GetFrequency()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
channel = 1; // green channel
std::cout << "Histogram of the green component" << std::endl;
for (unsigned int bin=0; bin < histogramSize; ++bin)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency( bin, channel ) << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// To finalize the example, we do the same computation for the case of the blue
// channel.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
size[0] = 1; // number of bins for the Red channel
size[1] = 1; // number of bins for the Green channel
size[2] = 255; // number of bins for the Blue channel
histogramFilter->SetHistogramSize( size );
histogramFilter->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// and verify the output.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
channel = 2; // blue channel
std::cout << "Histogram of the blue component" << std::endl;
for (unsigned int bin=0; bin < histogramSize; ++bin)
{
std::cout << "bin = " << bin << " frequency = ";
std::cout << histogram->GetFrequency( bin, channel ) << std::endl;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|