1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginLatex
//
// \index{Statistics!k-means clustering (using k-d tree)}
//
// \index{itk::Statistics::KdTree\-Based\-Kmeans\-Estimator}
//
// K-means clustering is a popular clustering algorithm because it is simple
// and usually converges to a reasonable solution. The k-means algorithm
// works as follows:
//
// \begin{enumerate}
// \item{Obtains the initial k means input from the user.}
// \item{Assigns each measurement vector in a sample container to its
// closest mean among the k number of means (i.e., update the membership of
// each measurement vectors to the nearest of the k clusters).}
// \item{Calculates each cluster's mean from the newly assigned
// measurement vectors (updates the centroid (mean) of k clusters).}
// \item{Repeats step 2 and step 3 until it meets the termination
// criteria.}
// \end{enumerate}
//
// The most common termination criterion is that if there is no
// measurement vector that changes its cluster membership from the
// previous iteration, then the algorithm stops.
//
// The \subdoxygen{Statistics}{KdTreeBasedKmeansEstimator} is a variation of
// this logic. The k-means clustering algorithm is computationally very
// expensive because it has to recalculate the mean at each iteration. To
// update the mean values, we have to calculate the distance between k means
// and each and every measurement vector. To reduce the computational burden,
// the KdTreeBasedKmeansEstimator uses a special data structure: the
// k-d tree (\subdoxygen{Statistics}{KdTree}) with additional
// information. The additional information includes the number and the vector
// sum of measurement vectors under each node under the tree architecture.
//
// With such additional information and the k-d tree data structure,
// we can reduce the computational cost of the distance calculation
// and means. Instead of calculating each measurement vector and k
// means, we can simply compare each node of the k-d tree and the k
// means. This idea of utilizing a k-d tree can be found in multiple
// articles \cite{Alsabti1998} \cite{Pelleg1999}
// \cite{Kanungo2000}. Our implementation of this scheme follows the
// article by the Kanungo et al \cite{Kanungo2000}.
//
// We use the \subdoxygen{Statistics}{ListSample} as the input sample, the
// \doxygen{Vector} as the measurement vector. The following code
// snippet includes their header files.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkVector.h"
#include "itkListSample.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since our k-means algorithm requires a \subdoxygen{Statistics}{KdTree}
// object as an input, we include the KdTree class header file. As mentioned
// above, we need a k-d tree with the vector sum and the number of
// measurement vectors. Therefore we use the
// \subdoxygen{Statistics}{WeightedCentroidKdTreeGenerator} instead of the
// \subdoxygen{Statistics}{KdTreeGenerator} that generate a k-d tree without
// such additional information.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkKdTree.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The KdTreeBasedKmeansEstimator class is the implementation of the
// k-means algorithm. It does not create k clusters. Instead, it
// returns the mean estimates for the k clusters.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkKdTreeBasedKmeansEstimator.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// To generate the clusters, we must create k instances of\newline
// \subdoxygen{Statistics}{DistanceToCentroidMembershipFunction} function as
// the membership functions for each cluster and plug
// that---along with a sample---into an
// \subdoxygen{Statistics}{SampleClassifierFilter} object to get a
// \subdoxygen{Statistics}{MembershipSample} that stores pairs of measurement
// vectors and their associated class labels (k labels).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkMinimumDecisionRule.h"
#include "itkSampleClassifierFilter.h"
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We will fill the sample with random variables from two normal
// distribution using the \subdoxygen{Statistics}{NormalVariateGenerator}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkNormalVariateGenerator.h"
// Software Guide : EndCodeSnippet
int main()
{
// Software Guide : BeginLatex
//
// Since the \code{NormalVariateGenerator} class only supports 1-D, we
// define our measurement vector type as one component vector. We
// then, create a \code{ListSample} object for data inputs. Each
// measurement vector is of length 1. We set this using the
// \code{SetMeasurementVectorSize()} method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Vector< double, 1 > MeasurementVectorType;
typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
SampleType::Pointer sample = SampleType::New();
sample->SetMeasurementVectorSize( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet creates a NormalVariateGenerator
// object. Since the random variable generator returns values
// according to the standard normal distribution (The mean is zero,
// and the standard deviation is one), before pushing random values
// into the \code{sample}, we change the mean and standard
// deviation. We want two normal (Gaussian) distribution data. We have
// two for loops. Each for loop uses different mean and standard
// deviation. Before we fill the \code{sample} with the second
// distribution data, we call \code{Initialize(random seed)} method,
// to recreate the pool of random variables in the
// \code{normalGenerator}.
//
// To see the probability density plots from the two distribution,
// refer to the Figure~\ref{fig:TwoNormalDensityFunctionPlot}.
//
// \begin{figure}
// \center
// \includegraphics[width=0.8\textwidth]{TwoNormalDensityFunctionPlot}
// \itkcaption[Two normal distributions plot]{Two normal distributions' probability density plot
// (The means are 100 and 200, and the standard deviation is 30 )}
// \protect\label{fig:TwoNormalDensityFunctionPlot}
// \end{figure}
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::NormalVariateGenerator NormalGeneratorType;
NormalGeneratorType::Pointer normalGenerator = NormalGeneratorType::New();
normalGenerator->Initialize( 101 );
MeasurementVectorType mv;
double mean = 100;
double standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
normalGenerator->Initialize( 3024 );
mean = 200;
standardDeviation = 30;
for (unsigned int i = 0; i < 100; ++i)
{
mv[0] = ( normalGenerator->GetVariate() * standardDeviation ) + mean;
sample->PushBack( mv );
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We create a k-d tree. To see the details on the k-d tree generation, see
// the Section~\ref{sec:KdTree}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::WeightedCentroidKdTreeGenerator< SampleType >
TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample( sample );
treeGenerator->SetBucketSize( 16 );
treeGenerator->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Once we have the k-d tree, it is a simple procedure to produce k
// mean estimates.
//
// We create the KdTreeBasedKmeansEstimator. Then, we provide the initial
// mean values using the \code{SetParameters()}. Since we are dealing with
// two normal distribution in a 1-D space, the size of the mean value array
// is two. The first element is the first mean value, and the second is the
// second mean value. If we used two normal distributions in a 2-D space,
// the size of array would be four, and the first two elements would be the
// two components of the first normal distribution's mean vector. We
// plug-in the k-d tree using the \code{SetKdTree()}.
//
// The remaining two methods specify the termination condition. The
// estimation process stops when the number of iterations reaches the
// maximum iteration value set by the \code{SetMaximumIteration()}, or the
// distances between the newly calculated mean (centroid) values and
// previous ones are within the threshold set by the
// \code{SetCentroidPositionChangesThreshold()}. The final step is
// to call the \code{StartOptimization()} method.
//
// The for loop will print out the mean estimates from the estimation
// process.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType >
EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();
EstimatorType::ParametersType initialMeans(2);
initialMeans[0] = 0.0;
initialMeans[1] = 0.0;
estimator->SetParameters( initialMeans );
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
for (unsigned int i = 0; i < 2; ++i)
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// If we are only interested in finding the mean estimates, we might
// stop. However, to illustrate how a classifier can be formed using
// the statistical classification framework. We go a little bit
// further in this example.
//
// Since the k-means algorithm is an minimum distance classifier using
// the estimated k means and the measurement vectors. We use the
// DistanceToCentroidMembershipFunction class as membership functions.
// Our choice for the decision rule is the
// \subdoxygen{Statistics}{MinimumDecisionRule} that returns the
// index of the membership functions that have the smallest value for
// a measurement vector.
//
// After creating a SampleClassifier filter object and a
// MinimumDecisionRule object, we plug-in the \code{decisionRule} and
// the \code{sample} to the classifier filter. Then, we must specify
// the number of classes that will be considered using the
// \code{SetNumberOfClasses()} method.
//
// The remainder of the following code snippet shows how to use
// user-specified class labels. The classification result will be stored
// in a MembershipSample object, and for each measurement vector, its
// class label will be one of the two class labels, 100 and 200
// (\code{unsigned int}).
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::DistanceToCentroidMembershipFunction<
MeasurementVectorType > MembershipFunctionType;
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer decisionRule = DecisionRuleType::New();
typedef itk::Statistics::SampleClassifierFilter< SampleType > ClassifierType;
ClassifierType::Pointer classifier = ClassifierType::New();
classifier->SetDecisionRule( decisionRule );
classifier->SetInput( sample );
classifier->SetNumberOfClasses( 2 );
typedef ClassifierType::ClassLabelVectorObjectType
ClassLabelVectorObjectType;
typedef ClassifierType::ClassLabelVectorType ClassLabelVectorType;
typedef ClassifierType::ClassLabelType ClassLabelType;
ClassLabelVectorObjectType::Pointer classLabelsObject =
ClassLabelVectorObjectType::New();
ClassLabelVectorType& classLabelsVector = classLabelsObject->Get();
ClassLabelType class1 = 200;
classLabelsVector.push_back( class1 );
ClassLabelType class2 = 100;
classLabelsVector.push_back( class2 );
classifier->SetClassLabels( classLabelsObject );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The \code{classifier} is almost ready to do the classification
// process except that it needs two membership functions that
// represents two clusters respectively.
//
// In this example, the two clusters are modeled by two Euclidean distance
// functions. The distance function (model) has only one parameter, its mean
// (centroid) set by the \code{SetCentroid()} method. To plug-in two distance
// functions, we create a MembershipFunctionVectorObject that contains a
// MembershipFunctionVector with two components and add it using the
// \code{SetMembershipFunctions} method. Then invocation of the
// \code{Update()} method will perform the classification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef ClassifierType::MembershipFunctionVectorObjectType
MembershipFunctionVectorObjectType;
typedef ClassifierType::MembershipFunctionVectorType
MembershipFunctionVectorType;
MembershipFunctionVectorObjectType::Pointer membershipFunctionVectorObject =
MembershipFunctionVectorObjectType::New();
MembershipFunctionVectorType& membershipFunctionVector =
membershipFunctionVectorObject->Get();
int index = 0;
for (unsigned int i = 0; i < 2; i++)
{
MembershipFunctionType::Pointer membershipFunction
= MembershipFunctionType::New();
MembershipFunctionType::CentroidType centroid(
sample->GetMeasurementVectorSize() );
for ( unsigned int j = 0; j < sample->GetMeasurementVectorSize(); j++ )
{
centroid[j] = estimatedMeans[index++];
}
membershipFunction->SetCentroid( centroid );
membershipFunctionVector.push_back( membershipFunction.GetPointer() );
}
classifier->SetMembershipFunctions( membershipFunctionVectorObject );
classifier->Update();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The following code snippet prints out the measurement vectors and
// their class labels in the \code{sample}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
const ClassifierType::MembershipSampleType* membershipSample =
classifier->GetOutput();
ClassifierType::MembershipSampleType::ConstIterator iter
= membershipSample->Begin();
while ( iter != membershipSample->End() )
{
std::cout << "measurement vector = " << iter.GetMeasurementVector()
<< " class label = " << iter.GetClassLabel()
<< std::endl;
++iter;
}
// Software Guide : EndCodeSnippet
return EXIT_SUCCESS;
}
|