File: SampleStatistics.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg1-4
  • links: PTS, VCS
  • area: main
  • in suites: bullseye
  • size: 489,260 kB
  • sloc: cpp: 557,342; ansic: 146,850; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 129; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (150 lines) | stat: -rw-r--r-- 4,672 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

// Software Guide : BeginLatex
//
// \index{itk::Statistics::MeanCalculator}
// \index{itk::Statistics::CovarianceSampleFilter}
// \index{Statistics!Mean}
// \index{Statistics!Covariance}
//
// We include the header file for the \doxygen{Vector} class that will
// be our measurement vector template in this example.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkVector.h"
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// We will use the \subdoxygen{Statistics}{ListSample} as our sample
// template. We include the header for the class too.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkListSample.h"
// Software Guide : EndCodeSnippet

// Software Guide : BeginLatex
//
// The following headers are for sample statistics algorithms.
//
// Software Guide : EndLatex

// Software Guide : BeginCodeSnippet
#include "itkMeanSampleFilter.h"
#include "itkCovarianceSampleFilter.h"
// Software Guide : EndCodeSnippet

int main()
{
  // Software Guide : BeginLatex
  //
  // The following code snippet will create a ListSample object
  // with three-component float measurement vectors and put five
  // measurement vectors in the ListSample object.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  const unsigned int MeasurementVectorLength = 3;
  typedef itk::Vector< float, MeasurementVectorLength > MeasurementVectorType;
  typedef itk::Statistics::ListSample< MeasurementVectorType > SampleType;
  SampleType::Pointer sample = SampleType::New();
  sample->SetMeasurementVectorSize( MeasurementVectorLength );
  MeasurementVectorType mv;
  mv[0] = 1.0;
  mv[1] = 2.0;
  mv[2] = 4.0;

  sample->PushBack( mv );

  mv[0] = 2.0;
  mv[1] = 4.0;
  mv[2] = 5.0;
  sample->PushBack( mv );

  mv[0] = 3.0;
  mv[1] = 8.0;
  mv[2] = 6.0;
  sample->PushBack( mv );

  mv[0] = 2.0;
  mv[1] = 7.0;
  mv[2] = 4.0;
  sample->PushBack( mv );

  mv[0] = 3.0;
  mv[1] = 2.0;
  mv[2] = 7.0;
  sample->PushBack( mv );
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // To calculate the mean (vector) of a sample, we instantiate the
  // \subdoxygen{Statistics}{MeanSampleFilter} class that implements the mean
  // algorithm and plug in the sample using the
  // \code{SetInputSample(sample*)} method.  By calling the \code{Update()}
  // method, we run the algorithm. We get the mean vector using the
  // \code{GetMean()} method. The output from the \code{GetOutput()} method
  // is the pointer to the mean vector.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Statistics::MeanSampleFilter< SampleType > MeanAlgorithmType;

  MeanAlgorithmType::Pointer meanAlgorithm = MeanAlgorithmType::New();

  meanAlgorithm->SetInput( sample );
  meanAlgorithm->Update();

  std::cout << "Sample mean = " << meanAlgorithm->GetMean() << std::endl;
  // Software Guide : EndCodeSnippet

  // Software Guide : BeginLatex
  //
  // The covariance calculation algorithm will also calculate the mean while
  // performing the covariance matrix calculation. The mean can be accessed
  // using the \code{GetMean()} method while the covariance can be accessed
  // using the \code{GetCovarianceMatrix()} method.
  //
  // Software Guide : EndLatex

  // Software Guide : BeginCodeSnippet
  typedef itk::Statistics::CovarianceSampleFilter< SampleType >
    CovarianceAlgorithmType;
  CovarianceAlgorithmType::Pointer covarianceAlgorithm =
    CovarianceAlgorithmType::New();

  covarianceAlgorithm->SetInput( sample );
  covarianceAlgorithm->Update();

  std::cout << "Mean = " << std::endl;
  std::cout << covarianceAlgorithm->GetMean() << std::endl;

  std::cout << "Covariance = " << std::endl;
  std::cout << covarianceAlgorithm->GetCovarianceMatrix() << std::endl;
  // Software Guide : EndCodeSnippet

  return EXIT_SUCCESS;
}