1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example shows how to compute the KMeans model of a Scalar Image.
//
// The \subdoxygen{Statistics}{KdTreeBasedKmeansEstimator} is used for taking
// a scalar image and applying the K-Means algorithm in order to define classes
// that represents statistical distributions of intensity values in the pixels.
// In the context of Medical Imaging, each class is typically associated to a
// particular type of tissue and can therefore be used as a form of image
// segmentation. One of the drawbacks of this technique is that the spatial
// distribution of the pixels is not considered at all. It is common therefore
// to combine the classification resulting from K-Means with other segmentation
// techniques that will use the classification as a prior and add spatial
// information to it in order to produce a better segmentation.
//
// Software Guide : EndLatex
#include "itkKdTree.h"
#include "itkKdTreeBasedKmeansEstimator.h"
#include "itkWeightedCentroidKdTreeGenerator.h"
#include "itkImageToListSampleAdaptor.h"
#include "itkImage.h"
#include "itkImageFileReader.h"
int main( int argc, char * argv [] )
{
if( argc < 2 )
{
std::cerr << "Missing command line arguments" << std::endl;
std::cerr << "Usage : " << argv[0] << " inputImageFileName " << std::endl;
return -1;
}
typedef unsigned char PixelType;
const unsigned int Dimension = 2;
typedef itk::Image<PixelType, Dimension > ImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( argv[1] );
try
{
reader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encoutered while reading image file : " << argv[1] << std::endl;
std::cerr << excp << std::endl;
return -1;
}
// Software Guide : BeginCodeSnippet
// Create a List from the scalar image
typedef itk::Statistics::ImageToListSampleAdaptor< ImageType > AdaptorType;
AdaptorType::Pointer adaptor = AdaptorType::New();
adaptor->SetImage( reader->GetOutput() );
// Create the K-d tree structure
typedef itk::Statistics::WeightedCentroidKdTreeGenerator<
AdaptorType > TreeGeneratorType;
TreeGeneratorType::Pointer treeGenerator = TreeGeneratorType::New();
treeGenerator->SetSample( adaptor );
treeGenerator->SetBucketSize( 16 );
treeGenerator->Update();
typedef TreeGeneratorType::KdTreeType TreeType;
typedef itk::Statistics::KdTreeBasedKmeansEstimator< TreeType >
EstimatorType;
EstimatorType::Pointer estimator = EstimatorType::New();
const unsigned int numberOfClasses = 3;
EstimatorType::ParametersType initialMeans( numberOfClasses );
initialMeans[0] = 25.0;
initialMeans[1] = 125.0;
initialMeans[2] = 250.0;
estimator->SetParameters( initialMeans );
estimator->SetKdTree( treeGenerator->GetOutput() );
estimator->SetMaximumIteration( 200 );
estimator->SetCentroidPositionChangesThreshold(0.0);
estimator->StartOptimization();
EstimatorType::ParametersType estimatedMeans = estimator->GetParameters();
for ( unsigned int i = 0; i < numberOfClasses; ++i )
{
std::cout << "cluster[" << i << "] " << std::endl;
std::cout << " estimated mean : " << estimatedMeans[i] << std::endl;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{BrainT1Slice}
// \itkcaption[Output of the ScalarImageKmeansModelEstimator]{Test image for the
// KMeans model estimator.}
// \label{fig:ScalarImageKmeansModelEstimatorTestImage}
// \end{figure}
//
// The example produces means of 14.8, 91.6, 134.9 on
// Figure \ref{fig:ScalarImageKmeansModelEstimatorTestImage}
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|