1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
// Software Guide : BeginCommandLineArgs
// INPUTS: {BrainT1Slice.png}
// INPUTS: {BrainT1Slice_labelled.png}
// OUTPUTS: {ScalarImageMarkovRandomField1Output.png}
// ARGUMENTS: 50 3 3 14.8 91.6 134.9
// Software Guide : EndCommandLineArgs
// Software Guide : BeginLatex
//
// This example shows how to use the Markov Random Field approach for
// classifying the pixel of a scalar image.
//
// The \subdoxygen{Statistics}{MRFImageFilter} is used for refining an initial
// classification by introducing the spatial coherence of the labels. The user
// should provide two images as input. The first image is the one to be
// classified while the second image is an image of labels representing an
// initial classification.
//
// Software Guide : EndLatex
// Software Guide : BeginLatex
//
// The following headers are related to reading input images, writing the
// output image, and making the necessary conversions between scalar and vector
// images.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkImage.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkComposeImageFilter.h"
// Software Guide : EndCodeSnippet
#include "itkRescaleIntensityImageFilter.h"
// Software Guide : BeginLatex
//
// The following headers are related to the statistical classification classes.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
#include "itkMRFImageFilter.h"
#include "itkDistanceToCentroidMembershipFunction.h"
#include "itkMinimumDecisionRule.h"
// Software Guide : EndCodeSnippet
int main( int argc, char * argv [] )
{
if( argc < 7 )
{
std::cerr << "Usage: " << std::endl;
std::cerr << argv[0];
std::cerr << " inputScalarImage inputLabeledImage";
std::cerr << " outputLabeledImage numberOfIterations";
std::cerr << " smoothingFactor numberOfClasses";
std::cerr << " mean1 mean2 ... meanN " << std::endl;
return EXIT_FAILURE;
}
const char * inputImageFileName = argv[1];
const char * inputLabelImageFileName = argv[2];
const char * outputImageFileName = argv[3];
const unsigned int numberOfIterations = atoi( argv[4] );
const double smoothingFactor = atof( argv[5] );
const unsigned int numberOfClasses = atoi( argv[6] );
const unsigned int numberOfArgumentsBeforeMeans = 7;
if( static_cast<unsigned int>(argc) <
numberOfClasses + numberOfArgumentsBeforeMeans )
{
std::cerr << "Error: " << std::endl;
std::cerr << numberOfClasses << " classes have been specified ";
std::cerr << "but not enough means have been provided in the command ";
std::cerr << "line arguments " << std::endl;
return EXIT_FAILURE;
}
// Software Guide : BeginLatex
//
// First we define the pixel type and dimension of the image that we intend to
// classify. With this image type we can also declare the
// \doxygen{ImageFileReader} needed for reading the input image, create one and
// set its input filename. In this particular case we choose to use
// \code{signed short} as pixel type, which is typical for MicroMRI and CT data
// sets.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef signed short PixelType;
const unsigned int Dimension = 2;
typedef itk::Image<PixelType, Dimension > ImageType;
typedef itk::ImageFileReader< ImageType > ReaderType;
ReaderType::Pointer reader = ReaderType::New();
reader->SetFileName( inputImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// As a second step we define the pixel type and dimension of the image of
// labels that provides the initial classification of the pixels from the first
// image. This initial labeled image can be the output of a K-Means method like
// the one illustrated in section \ref{sec:KMeansClassifier}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef unsigned char LabelPixelType;
typedef itk::Image<LabelPixelType, Dimension > LabelImageType;
typedef itk::ImageFileReader< LabelImageType > LabelReaderType;
LabelReaderType::Pointer labelReader = LabelReaderType::New();
labelReader->SetFileName( inputLabelImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Since the Markov Random Field algorithm is defined in general for images
// whose pixels have multiple components, that is, images of vector type, we
// must adapt our scalar image in order to satisfy the interface expected by
// the \code{MRFImageFilter}. We do this by using the
// \doxygen{ComposeImageFilter}. With this filter we will present our
// scalar image as a vector image whose vector pixels contain a single
// component.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::FixedArray<LabelPixelType,1> ArrayPixelType;
typedef itk::Image< ArrayPixelType, Dimension > ArrayImageType;
typedef itk::ComposeImageFilter<
ImageType, ArrayImageType > ScalarToArrayFilterType;
ScalarToArrayFilterType::Pointer
scalarToArrayFilter = ScalarToArrayFilterType::New();
scalarToArrayFilter->SetInput( reader->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// With the input image type \code{ImageType} and labeled image type
// \code{LabelImageType} we instantiate the type of the
// \doxygen{MRFImageFilter} that will apply the Markov Random Field algorithm
// in order to refine the pixel classification.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::MRFImageFilter< ArrayImageType, LabelImageType > MRFFilterType;
MRFFilterType::Pointer mrfFilter = MRFFilterType::New();
mrfFilter->SetInput( scalarToArrayFilter->GetOutput() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set now some of the parameters for the MRF filter. In particular, the
// number of classes to be used during the classification, the maximum number
// of iterations to be run in this filter and the error tolerance that will be
// used as a criterion for convergence.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNumberOfClasses( numberOfClasses );
mrfFilter->SetMaximumNumberOfIterations( numberOfIterations );
mrfFilter->SetErrorTolerance( 1e-7 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The smoothing factor represents the tradeoff between fidelity to the
// observed image and the smoothness of the segmented image. Typical smoothing
// factors have values between 1~5. This factor will multiply the weights that
// define the influence of neighbors on the classification of a given pixel.
// The higher the value, the more uniform will be the regions resulting from
// the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor( smoothingFactor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Given that the MRF filter need to continually relabel the pixels, it needs
// access to a set of membership functions that will measure to what degree
// every pixel belongs to a particular class. The classification is performed
// by the \doxygen{ImageClassifierBase} class, that is instantiated using the
// type of the input vector image and the type of the labeled image.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::ImageClassifierBase<
ArrayImageType,
LabelImageType > SupervisedClassifierType;
SupervisedClassifierType::Pointer classifier =
SupervisedClassifierType::New();
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The classifier need a decision rule to be set by the user. Note that we must
// use \code{GetPointer()} in the call of the \code{SetDecisionRule()} method
// because we are passing a SmartPointer, and smart pointer cannot perform
// polymorphism, we must then extract the raw pointer that is associated to the
// smart pointer. This extraction is done with the GetPointer() method.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::MinimumDecisionRule DecisionRuleType;
DecisionRuleType::Pointer classifierDecisionRule = DecisionRuleType::New();
classifier->SetDecisionRule( classifierDecisionRule.GetPointer() );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now instantiate the membership functions. In this case we use the
// \subdoxygen{Statistics}{DistanceToCentroidMembershipFunction} class
// templated over the pixel type of the vector image, that in our example
// happens to be a vector of dimension 1.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef itk::Statistics::DistanceToCentroidMembershipFunction<
ArrayPixelType >
MembershipFunctionType;
typedef MembershipFunctionType::Pointer MembershipFunctionPointer;
double meanDistance = 0;
MembershipFunctionType::CentroidType centroid(1);
for( unsigned int i=0; i < numberOfClasses; i++ )
{
MembershipFunctionPointer membershipFunction =
MembershipFunctionType::New();
centroid[0] = atof( argv[i+numberOfArgumentsBeforeMeans] );
membershipFunction->SetCentroid( centroid );
classifier->AddMembershipFunction( membershipFunction );
meanDistance += static_cast< double > (centroid[0]);
}
if (numberOfClasses > 0)
{
meanDistance /= numberOfClasses;
}
else
{
std::cerr << "ERROR: numberOfClasses is 0" << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We set the Smoothing factor. This factor will multiply the weights that
// define the influence of neighbors on the classification of a given pixel.
// The higher the value, the more uniform will be the regions resulting from
// the classification refinement.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetSmoothingFactor( smoothingFactor );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// and we set the neighborhood radius that will define the size of the clique
// to be used in the computation of the neighbors' influence in the
// classification of any given pixel. Note that despite the fact that we call
// this a radius, it is actually the half size of an hypercube. That is, the
// actual region of influence will not be circular but rather an N-Dimensional
// box. For example, a neighborhood radius of 2 in a 3D image will result in a
// clique of size 5x5x5 pixels, and a radius of 1 will result in a clique of
// size 3x3x3 pixels.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetNeighborhoodRadius( 1 );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We should now set the weights used for the neighbors. This is done by
// passing an array of values that contains the linear sequence of weights for
// the neighbors. For example, in a neighborhood of size 3x3x3, we should
// provide a linear array of 9 weight values. The values are packaged in a
// \code{std::vector} and are supposed to be \code{double}. The following lines
// illustrate a typical set of values for a 3x3x3 neighborhood. The array is
// arranged and then passed to the filter by using the method
// \code{SetMRFNeighborhoodWeight()}.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
std::vector< double > weights;
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(0.0); // This is the central pixel
weights.push_back(2.0);
weights.push_back(1.5);
weights.push_back(2.0);
weights.push_back(1.5);
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We now scale weights so that the smoothing function and the image fidelity
// functions have comparable value. This is necessary since the label
// image and the input image can have different dynamic ranges. The fidelity
// function is usually computed using a distance function, such as the
// \doxygen{DistanceToCentroidMembershipFunction} or one of the other
// membership functions. They tend to have values in the order of the means
// specified.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
double totalWeight = 0;
for(std::vector< double >::const_iterator wcIt = weights.begin();
wcIt != weights.end(); ++wcIt )
{
totalWeight += *wcIt;
}
for(std::vector< double >::iterator wIt = weights.begin();
wIt != weights.end(); ++wIt )
{
*wIt = static_cast< double > ( (*wIt) * meanDistance / (2 * totalWeight));
}
mrfFilter->SetMRFNeighborhoodWeight( weights );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// Finally, the classifier class is connected to the Markof Random Fields filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
mrfFilter->SetClassifier( classifier );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// The output image produced by the \doxygen{MRFImageFilter} has the same pixel
// type as the labeled input image. In the following lines we use the
// \code{OutputImageType} in order to instantiate the type of a
// \doxygen{ImageFileWriter}. Then create one, and connect it to the output of
// the classification filter after passing it through an intensity rescaler
// to rescale it to an 8 bit dynamic range
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
typedef MRFFilterType::OutputImageType OutputImageType;
// Software Guide : EndCodeSnippet
// Rescale outputs to the dynamic range of the display
typedef itk::Image< unsigned char, Dimension > RescaledOutputImageType;
typedef itk::RescaleIntensityImageFilter<
OutputImageType, RescaledOutputImageType > RescalerType;
RescalerType::Pointer intensityRescaler = RescalerType::New();
intensityRescaler->SetOutputMinimum( 0 );
intensityRescaler->SetOutputMaximum( 255 );
intensityRescaler->SetInput( mrfFilter->GetOutput() );
// Software Guide : BeginCodeSnippet
typedef itk::ImageFileWriter< OutputImageType > WriterType;
WriterType::Pointer writer = WriterType::New();
writer->SetInput( intensityRescaler->GetOutput() );
writer->SetFileName( outputImageFileName );
// Software Guide : EndCodeSnippet
// Software Guide : BeginLatex
//
// We are now ready for triggering the execution of the pipeline. This is done
// by simply invoking the \code{Update()} method in the writer. This call will
// propagate the update request to the reader and then to the MRF filter.
//
// Software Guide : EndLatex
// Software Guide : BeginCodeSnippet
try
{
writer->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Problem encountered while writing ";
std::cerr << " image file : " << argv[2] << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// Software Guide : EndCodeSnippet
std::cout << "Number of Iterations : ";
std::cout << mrfFilter->GetNumberOfIterations() << std::endl;
std::cout << "Stop condition: " << std::endl;
std::cout << " (1) Maximum number of iterations " << std::endl;
std::cout << " (2) Error tolerance: " << std::endl;
std::cout << mrfFilter->GetStopCondition() << std::endl;
// Software Guide : BeginLatex
//
// \begin{figure} \center
// \includegraphics[width=0.44\textwidth]{ScalarImageMarkovRandomField1Output}
// \itkcaption[Output of the ScalarImageMarkovRandomField]{Effect of the
// MRF filter on a T1 slice of the brain.}
// \label{fig:ScalarImageMarkovRandomFieldInputOutput}
// \end{figure}
//
// Figure \ref{fig:ScalarImageMarkovRandomFieldInputOutput}
// illustrates the effect of this filter with three classes.
// In this example the filter was run with a smoothing factor of 3.
// The labeled image was produced by ScalarImageKmeansClassifier.cxx
// and the means were estimated by ScalarImageKmeansModelEstimator.cxx.
//
// Software Guide : EndLatex
return EXIT_SUCCESS;
}
|