1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86
|
#==========================================================================
#
# Copyright Insight Software Consortium
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0.txt
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#
#==========================================================================*/
import itk
from sys import argv
itk.auto_progress(2)
# define a custom templated pipeline
class LabelDilateImageFilter(itk.pipeline):
def __init__(self, *args, **kargs):
# call the constructor of the superclass but without args and kargs,
# because the attributes are not all already there!
# Set/GetRadius() is created in the constructor for example, with the
# expose() method
itk.pipeline.__init__(self)
# get the template parameters
template_parameters = kargs["template_parameters"]
# check the template parameters validity. Not really useful in that
# case, because we do the same here, but a good habit
LabelDilateImageFilter.check_template_parameters(template_parameters)
# and store them in an easier way
ImageType, DistanceMapType = template_parameters
# build the minipipeline
self.connect(
itk.DanielssonDistanceMapImageFilter[
ImageType,
DistanceMapType].New(
UseImageSpacing=True,
SquaredDistance=False))
self.connect(
itk.BinaryThresholdImageFilter[DistanceMapType,
ImageType].New())
self.expose("UpperThreshold", "Radius")
self.append(
itk.MaskImageFilter[ImageType,
ImageType,
ImageType].New(self.filters[0].GetVoronoiMap(),
Input2=self.filters[1]))
# now we can parse the inputs
itk.set_inputs(self, args, kargs)
def check_template_parameters(template_parameters):
ImageType, DistanceMapType = template_parameters
itk.DanielssonDistanceMapImageFilter[ImageType, DistanceMapType]
itk.BinaryThresholdImageFilter[DistanceMapType, ImageType]
itk.CastImageFilter[DistanceMapType, ImageType]
itk.MaskImageFilter[ImageType, ImageType, ImageType]
check_template_parameters = staticmethod(check_template_parameters)
LabelDilateImageFilter = itk.templated_class(LabelDilateImageFilter)
# and use it
dim = 2
IType = itk.Image[itk.UC, dim]
OIType = itk.Image[itk.UC, dim]
DIType = itk.Image[itk.F, dim]
reader = itk.ImageFileReader[IType].New(FileName=argv[1])
val = argv[3]
dilate = LabelDilateImageFilter[IType, DIType].New(reader, Radius=eval(val))
writer = itk.ImageFileWriter[OIType].New(dilate, FileName=argv[2])
writer.Update()
|