1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader_h
#define itkANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader_h
#include "itkImageToImageMetricv4GetValueAndDerivativeThreader.h"
#include "itkThreadedImageRegionPartitioner.h"
#include "itkThreadedIndexedContainerPartitioner.h"
#include "itkConstNeighborhoodIterator.h"
#include <deque>
namespace itk
{
/**
* A template struct to identify different input type arguments. This is used
* for function overloading by different threaders. Refer to the comments below.
*/
template<typename T>
struct IdentityHelper
{
typedef T MyType;
};
/** \class ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader
* \brief Threading implementation for ANTS CC metric \c ANTSNeighborhoodCorrelationImageToImageMetricv4 .
* Supports both dense and sparse threading ways. The dense threader iterates over the whole image domain
* in order and use a neighborhood scanning window to compute the local cross correlation metric and
* its derivative incrementally inside the window. The sparse threader uses a sampled point set partitioner to
* computer local cross correlation only at the sampled positions.
*
* This threader class is designed to host the dense and sparse threader under the same name so most computation
* routine functions and interior member variables can be shared. This eliminates the need to duplicate codes
* for two threaders. This is made by using function overloading and a helper class to identify different types of domain
* partitioners.
*
*
* \ingroup ITKMetricsv4
*/
template< typename TDomainPartitioner, typename TImageToImageMetric, typename TNeighborhoodCorrelationMetric >
class ITK_TEMPLATE_EXPORT ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader
: public ImageToImageMetricv4GetValueAndDerivativeThreader< TDomainPartitioner, TImageToImageMetric >
{
public:
/** Standard class typedefs. */
typedef ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader Self;
typedef ImageToImageMetricv4GetValueAndDerivativeThreader< TDomainPartitioner, TImageToImageMetric >
Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
itkTypeMacro( ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader, ImageToImageMetricv4GetValueAndDerivativeThreader );
itkNewMacro( Self );
typedef typename Superclass::DomainType DomainType;
typedef typename Superclass::AssociateType AssociateType;
typedef typename Superclass::VirtualImageType VirtualImageType;
typedef typename Superclass::VirtualPointType VirtualPointType;
typedef typename Superclass::VirtualIndexType VirtualIndexType;
typedef typename Superclass::FixedImagePointType FixedImagePointType;
typedef typename Superclass::FixedImagePixelType FixedImagePixelType;
typedef typename Superclass::FixedImageGradientType FixedImageGradientType;
typedef typename Superclass::MovingImagePointType MovingImagePointType;
typedef typename Superclass::MovingImagePixelType MovingImagePixelType;
typedef typename Superclass::MovingImageGradientType MovingImageGradientType;
typedef typename Superclass::MeasureType MeasureType;
typedef typename Superclass::DerivativeType DerivativeType;
typedef typename Superclass::DerivativeValueType DerivativeValueType;
typedef TNeighborhoodCorrelationMetric NeighborhoodCorrelationMetricType;
typedef typename NeighborhoodCorrelationMetricType::ImageRegionType ImageRegionType;
typedef typename NeighborhoodCorrelationMetricType::InternalComputationValueType InternalComputationValueType;
typedef typename NeighborhoodCorrelationMetricType::ImageDimensionType ImageDimensionType;
typedef typename NeighborhoodCorrelationMetricType::JacobianType JacobianType;
typedef typename NeighborhoodCorrelationMetricType::NumberOfParametersType NumberOfParametersType;
typedef typename NeighborhoodCorrelationMetricType::FixedImageType FixedImageType;
typedef typename NeighborhoodCorrelationMetricType::MovingImageType MovingImageType;
typedef typename NeighborhoodCorrelationMetricType::RadiusType RadiusType;
// interested values here updated during scanning
typedef InternalComputationValueType QueueRealType;
typedef std::deque<QueueRealType> SumQueueType;
typedef ConstNeighborhoodIterator<VirtualImageType> ScanIteratorType;
// one ScanMemType for each thread
typedef struct ScanMemType {
// queues used in the scanning
// sum of the fixed value squared
SumQueueType QsumFixed2;
// sum of the moving value squared
SumQueueType QsumMoving2;
SumQueueType QsumFixed;
SumQueueType QsumMoving;
SumQueueType QsumFixedMoving;
SumQueueType Qcount;
QueueRealType fixedA;
QueueRealType movingA;
QueueRealType sFixedMoving;
QueueRealType sFixedFixed;
QueueRealType sMovingMoving;
FixedImageGradientType fixedImageGradient;
MovingImageGradientType movingImageGradient;
FixedImagePointType mappedFixedPoint;
MovingImagePointType mappedMovingPoint;
VirtualPointType virtualPoint;
} ScanMemType;
// For dense scan over one image region
typedef struct ScanParametersType {
// const values during scanning
ImageRegionType scanRegion;
SizeValueType numberOfFillZero; // for each queue
SizeValueType windowLength; // number of voxels in the scanning window
IndexValueType scanRegionBeginIndexDim0;
typename FixedImageType::ConstPointer fixedImage;
typename MovingImageType::ConstPointer movingImage;
typename VirtualImageType::ConstPointer virtualImage;
RadiusType radius;
} ScanParametersType;
protected:
ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader() :
m_ANTSAssociate(ITK_NULLPTR)
{}
/**
* Dense threader and sparse threader invoke different in multi-threading. This class uses overloaded
* implementations of \c ProcessVirtualPoint_impl and \c ThreadExecution_impl in order to handle the
* dense and sparse cases differently. The helper class IdentityHelper allows for correct overloading
* these methods when substituting different type of the threaded partitioner
*
* 1) Dense threader: through its own \c ThreadedExecution. \c ProcessVirtualPoint and
* \c ProcessPoint of the base class are thus not used.
*
* 2) Sparse threader: through its own \c ProcessVirtualPoint. \c ThreadedExecution still invokes (mostly)
* from the base class.
*
* In order to invoke different \c ThreadedExecution by different threader, we use function overloading
* techniques to resolve which version of \c ThreadedExecution and \c ProcessVirtualPoint by
* the type of the domain partitioner.
*
* Specifically, a helper class \c IdentityHelper is used as a function parameter, with the sole purpose
* to differentiate different types of domain partitioners: \c ThreadedIndexedContainerPartitioner for sparse
* or \c ThreadedImageRegionPartitioner for dense. \c IdentityHelper is simply a class template, ie. a struct
* wrapper of type template arguments.
*
* This technique takes advantage of SFINAE (Substitution Failure Is Not An Error) in specializing function
* templates. The helper class \c IdentityHelper is used to overload w.r.t different partitioner types.
* More discussion can be found at:
* http://stackoverflow.com/questions/3052579/explicit-specialization-in-non-namespace-scope
*
* */
/** Method called by the threaders to process the given virtual point. This
* in turn calls \c TransformAndEvaluateFixedPoint, \c
* TransformAndEvaluateMovingPoint, and \c ProcessPoint.
* And adds entries to m_MeasurePerThread and m_LocalDerivativesPerThread,
* m_NumberOfValidPointsPerThread. */
virtual bool ProcessVirtualPoint( const VirtualIndexType & virtualIndex,
const VirtualPointType & virtualPoint,
const ThreadIdType threadId ) ITK_OVERRIDE {
return ProcessVirtualPoint_impl(IdentityHelper<TDomainPartitioner>(), virtualIndex, virtualPoint, threadId );
}
/* specific overloading for sparse CC metric */
bool ProcessVirtualPoint_impl(
IdentityHelper<ThreadedIndexedContainerPartitioner> itkNotUsed(self),
const VirtualIndexType & virtualIndex,
const VirtualPointType & virtualPoint,
const ThreadIdType threadId );
/* for other default case */
template<typename T>
bool ProcessVirtualPoint_impl(
IdentityHelper<T> itkNotUsed(self),
const VirtualIndexType & virtualIndex,
const VirtualPointType & virtualPoint,
const ThreadIdType threadId ) {
return Superclass::ProcessVirtualPoint(virtualIndex, virtualPoint, threadId);
}
/** \c ProcessPoint() must be overloaded since it is a pure virtual function.
* It is not used for either sparse or dense threader.
* */
virtual bool ProcessPoint(
const VirtualIndexType & itkNotUsed(virtualIndex),
const VirtualPointType & itkNotUsed(virtualPoint),
const FixedImagePointType & itkNotUsed(mappedFixedPoint),
const FixedImagePixelType & itkNotUsed(mappedFixedPixelValue),
const FixedImageGradientType & itkNotUsed(mappedFixedImageGradient),
const MovingImagePointType & itkNotUsed(mappedMovingPoint),
const MovingImagePixelType & itkNotUsed(mappedMovingPixelValue),
const MovingImageGradientType & itkNotUsed(mappedMovingImageGradient),
MeasureType & itkNotUsed(metricValueReturn),
DerivativeType & itkNotUsed(localDerivativeReturn),
const ThreadIdType itkNotUsed(threadId) ) const ITK_OVERRIDE
{
itkExceptionMacro("ProcessPoint should never be reached in ANTS CC metric threader class.");
}
virtual void ThreadedExecution( const DomainType& domain,
const ThreadIdType threadId ) ITK_OVERRIDE
{
ThreadedExecution_impl(IdentityHelper<TDomainPartitioner>(), domain, threadId );
}
/* specific overloading for dense threader only based CC metric */
void ThreadedExecution_impl(
IdentityHelper<ThreadedImageRegionPartitioner<TImageToImageMetric::VirtualImageDimension> > itkNotUsed(self),
const DomainType& domain,
const ThreadIdType threadId );
/* for other default case */
template<typename T>
void ThreadedExecution_impl(
IdentityHelper<T> itkNotUsed(self),
const DomainType& domain,
const ThreadIdType threadId );
/** Common functions for computing correlation over scanning windows **/
/** Create an iterator over the virtual sub region */
void InitializeScanning(const ImageRegionType &scanRegion,
ScanIteratorType &scanIt, ScanMemType &scanMem,
ScanParametersType &scanParameters ) const;
/** Update the queues for the next point. Calls either \c
* UpdateQueuesAtBeginningOfLine or \c UpdateQueuesToNextScanWindow. */
void UpdateQueues(const ScanIteratorType &scanIt,
ScanMemType &scanMem, const ScanParametersType &scanParameters,
const ThreadIdType threadId) const;
void UpdateQueuesAtBeginningOfLine(
const ScanIteratorType &scanIt, ScanMemType &scanMem,
const ScanParametersType &scanParameters,
const ThreadIdType threadId) const;
/** Increment the iterator and check to see if we're at the end of the
* line. If so, go to the next line. Otherwise, add the
* the values for the next hyperplane. */
void UpdateQueuesToNextScanWindow(
const ScanIteratorType &scanIt, ScanMemType &scanMem,
const ScanParametersType &scanParameters,
const ThreadIdType threadId) const;
/** Test to see if there are any voxels we need to handle in the current
* window. */
bool ComputeInformationFromQueues(
const ScanIteratorType &scanIt, ScanMemType &scanMem,
const ScanParametersType &scanParameters,
const ThreadIdType threadId) const;
void ComputeMovingTransformDerivative(
const ScanIteratorType &scanIt, ScanMemType &scanMem,
const ScanParametersType &scanParameters, DerivativeType &deriv,
MeasureType &local_cc, const ThreadIdType threadId) const;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(ANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader);
/** Internal pointer to the metric object in use by this threader.
* This will avoid costly dynamic casting in tight loops. */
TNeighborhoodCorrelationMetric * m_ANTSAssociate;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkANTSNeighborhoodCorrelationImageToImageMetricv4GetValueAndDerivativeThreader.hxx"
#endif
#endif
|