1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCorrelationImageToImageMetricv4GetValueAndDerivativeThreader_hxx
#define itkCorrelationImageToImageMetricv4GetValueAndDerivativeThreader_hxx
#include "itkCorrelationImageToImageMetricv4GetValueAndDerivativeThreader.h"
namespace itk
{
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader< TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::CorrelationImageToImageMetricv4GetValueAndDerivativeThreader() :
m_CorrelationMetricValueDerivativePerThreadVariables( ITK_NULLPTR ),
m_CorrelationAssociate( ITK_NULLPTR )
{}
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader< TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::~CorrelationImageToImageMetricv4GetValueAndDerivativeThreader()
{
delete[] m_CorrelationMetricValueDerivativePerThreadVariables;
}
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
void
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader< TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::BeforeThreadedExecution()
{
Superclass::BeforeThreadedExecution();
/* Store the casted pointer to avoid dynamic casting in tight loops. */
this->m_CorrelationAssociate = dynamic_cast<TCorrelationMetric *>(this->m_Associate);
if( this->m_CorrelationAssociate == ITK_NULLPTR )
{
itkExceptionMacro("Dynamic casting of associate pointer failed.");
}
/* This size always comes from the moving image */
const NumberOfParametersType globalDerivativeSize = this->GetCachedNumberOfParameters();
const ThreadIdType numThreadsUsed = this->GetNumberOfThreadsUsed();
// set size
delete[] m_CorrelationMetricValueDerivativePerThreadVariables;
m_CorrelationMetricValueDerivativePerThreadVariables = new AlignedCorrelationMetricValueDerivativePerThreadStruct[ numThreadsUsed ];
for (ThreadIdType i = 0; i < numThreadsUsed; ++i)
{
this->m_CorrelationMetricValueDerivativePerThreadVariables[i].fdm.SetSize(globalDerivativeSize);
this->m_CorrelationMetricValueDerivativePerThreadVariables[i].mdm.SetSize(globalDerivativeSize);
}
//---------------------------------------------------------------
// Set initial values.
for (ThreadIdType i = 0; i < numThreadsUsed; ++i)
{
m_CorrelationMetricValueDerivativePerThreadVariables[i].fm = NumericTraits<InternalComputationValueType>::ZeroValue();
m_CorrelationMetricValueDerivativePerThreadVariables[i].f2 = NumericTraits<InternalComputationValueType>::ZeroValue();
m_CorrelationMetricValueDerivativePerThreadVariables[i].m2 = NumericTraits<InternalComputationValueType>::ZeroValue();
m_CorrelationMetricValueDerivativePerThreadVariables[i].f = NumericTraits<InternalComputationValueType>::ZeroValue();
m_CorrelationMetricValueDerivativePerThreadVariables[i].m = NumericTraits<InternalComputationValueType>::ZeroValue();
this->m_CorrelationMetricValueDerivativePerThreadVariables[i].mdm.Fill(NumericTraits<DerivativeValueType>::ZeroValue());
this->m_CorrelationMetricValueDerivativePerThreadVariables[i].fdm.Fill(NumericTraits<DerivativeValueType>::ZeroValue());
}
}
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
void
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader<TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::AfterThreadedExecution()
{
/* This size always comes from the moving image */
const NumberOfParametersType globalDerivativeSize = this->GetCachedNumberOfParameters();
const ThreadIdType numThreadsUsed = this->GetNumberOfThreadsUsed();
/* Store the number of valid points the enclosing class \c
* m_NumberOfValidPoints by collecting the valid points per thread. */
this->m_CorrelationAssociate->m_NumberOfValidPoints = NumericTraits<SizeValueType>::ZeroValue();
for (ThreadIdType i = 0; i < numThreadsUsed; ++i)
{
this->m_CorrelationAssociate->m_NumberOfValidPoints += this->m_GetValueAndDerivativePerThreadVariables[i].NumberOfValidPoints;
}
/* Check the number of valid points meets the default minimum.
* If not, parameters will hold default return values for this case */
if( ! this->m_CorrelationAssociate->VerifyNumberOfValidPoints( this->m_CorrelationAssociate->m_Value, *(this->m_CorrelationAssociate->m_DerivativeResult) ) )
{
return;
}
itkDebugMacro("CorrelationImageToImageMetricv4: NumberOfValidPoints: " << this->m_CorrelationAssociate->m_NumberOfValidPoints);
/* Accumulate the metric value from threads and store */
this->m_CorrelationAssociate->m_Value = NumericTraits<InternalComputationValueType>::ZeroValue();
InternalComputationValueType fm = NumericTraits<InternalComputationValueType>::ZeroValue();
InternalComputationValueType f2 = NumericTraits<InternalComputationValueType>::ZeroValue();
InternalComputationValueType m2 = NumericTraits<InternalComputationValueType>::ZeroValue();
for (ThreadIdType threadId = 0; threadId < numThreadsUsed; ++threadId)
{
fm += this->m_CorrelationMetricValueDerivativePerThreadVariables[threadId].fm;
m2 += this->m_CorrelationMetricValueDerivativePerThreadVariables[threadId].m2;
f2 += this->m_CorrelationMetricValueDerivativePerThreadVariables[threadId].f2;
}
InternalComputationValueType m2f2 = m2 * f2;
if ( m2f2 <= NumericTraits<InternalComputationValueType>::epsilon() )
{
itkDebugMacro( "CorrelationImageToImageMetricv4: m2 * f2 <= epsilon");
return;
}
this->m_CorrelationAssociate->m_Value = -1.0 * fm * fm / (m2f2);
/* For global transforms, compute the derivatives by combining values from each region. */
if( this->m_CorrelationAssociate->GetComputeDerivative() )
{
DerivativeType fdm, mdm;
fdm.SetSize(globalDerivativeSize);
mdm.SetSize(globalDerivativeSize);
fdm.Fill(NumericTraits<DerivativeValueType>::ZeroValue());
mdm.Fill(NumericTraits<DerivativeValueType>::ZeroValue());
const InternalComputationValueType fc = static_cast<InternalComputationValueType>( 2.0 );
for (ThreadIdType i = 0; i < numThreadsUsed; ++i)
{
fdm += this->m_CorrelationMetricValueDerivativePerThreadVariables[i].fdm;
mdm += this->m_CorrelationMetricValueDerivativePerThreadVariables[i].mdm;
}
/** There should be a minus sign of \frac{d}{dp} mathematically, which
* is not in the implementation to match the requirement of the metricv4
* optimization framework.
*
* We use += instead of assignment here because for multi-variate vector,
* we will want to always add to the values in m_DerivativeResult so they
* can be efficiently accumulated between multiple metrics.
*/
*(this->m_CorrelationAssociate->m_DerivativeResult) += fc *fm/(f2*m2)*(fdm - fm/m2*mdm);
}
}
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
bool
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader<TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::ProcessVirtualPoint( const VirtualIndexType & virtualIndex, const VirtualPointType & virtualPoint, const ThreadIdType threadId )
{
FixedImagePointType mappedFixedPoint;
FixedImagePixelType mappedFixedPixelValue;
FixedImageGradientType mappedFixedImageGradient;
MovingImagePointType mappedMovingPoint;
MovingImagePixelType mappedMovingPixelValue;
MovingImageGradientType mappedMovingImageGradient;
bool pointIsValid = false;
MeasureType metricValueResult;
/* Transform the point into fixed and moving spaces, and evaluate.
* Different behavior with pre-warping enabled is handled transparently.
* Do this in a try block to catch exceptions and print more useful info
* then we otherwise get when exceptions are caught in MultiThreader. */
try
{
pointIsValid = this->m_CorrelationAssociate->TransformAndEvaluateFixedPoint( virtualPoint, mappedFixedPoint, mappedFixedPixelValue );
if( pointIsValid &&
this->m_CorrelationAssociate->GetComputeDerivative() &&
this->m_CorrelationAssociate->GetGradientSourceIncludesFixed() )
{
this->m_CorrelationAssociate->ComputeFixedImageGradientAtPoint( mappedFixedPoint, mappedFixedImageGradient );
}
}
catch( ExceptionObject & exc )
{
//NOTE: there must be a cleaner way to do this:
std::string msg("Caught exception: \n");
msg += exc.what();
ExceptionObject err(__FILE__, __LINE__, msg);
throw err;
}
if( !pointIsValid )
{
return pointIsValid;
}
try
{
pointIsValid = this->m_CorrelationAssociate->TransformAndEvaluateMovingPoint( virtualPoint, mappedMovingPoint, mappedMovingPixelValue );
if( pointIsValid &&
this->m_CorrelationAssociate->GetComputeDerivative() &&
this->m_CorrelationAssociate->GetGradientSourceIncludesMoving() )
{
this->m_CorrelationAssociate->ComputeMovingImageGradientAtPoint( mappedMovingPoint, mappedMovingImageGradient );
}
}
catch( ExceptionObject & exc )
{
std::string msg("Caught exception: \n");
msg += exc.what();
ExceptionObject err(__FILE__, __LINE__, msg);
throw err;
}
if( !pointIsValid )
{
return pointIsValid;
}
/* Call the user method in derived classes to do the specific
* calculations for value and derivative. */
try
{
pointIsValid = this->ProcessPoint(
virtualIndex,
virtualPoint,
mappedFixedPoint, mappedFixedPixelValue,
mappedFixedImageGradient,
mappedMovingPoint, mappedMovingPixelValue,
mappedMovingImageGradient,
metricValueResult, this->m_GetValueAndDerivativePerThreadVariables[threadId].LocalDerivatives,
threadId );
}
catch( ExceptionObject & exc )
{
//NOTE: there must be a cleaner way to do this:
std::string msg("Exception in GetValueAndDerivativeProcessPoint:\n");
msg += exc.what();
ExceptionObject err(__FILE__, __LINE__, msg);
throw err;
}
if( pointIsValid )
{
this->m_GetValueAndDerivativePerThreadVariables[threadId].NumberOfValidPoints++;
}
return pointIsValid;
}
template<typename TDomainPartitioner, typename TImageToImageMetric, typename TCorrelationMetric>
bool
CorrelationImageToImageMetricv4GetValueAndDerivativeThreader<TDomainPartitioner, TImageToImageMetric, TCorrelationMetric>
::ProcessPoint( const VirtualIndexType & itkNotUsed(virtualIndex),
const VirtualPointType & virtualPoint,
const FixedImagePointType & itkNotUsed(mappedFixedPoint),
const FixedImagePixelType & fixedImageValue,
const FixedImageGradientType & itkNotUsed(mappedFixedImageGradient),
const MovingImagePointType & itkNotUsed(mappedMovingPoint),
const MovingImagePixelType & movingImageValue,
const MovingImageGradientType & movingImageGradient,
MeasureType & itkNotUsed(metricValueReturn),
DerivativeType & itkNotUsed(localDerivativeReturn),
const ThreadIdType threadId) const
{
/*
* metricValueReturn and localDerivativeReturn will not be computed here.
* Instead, m_CorrelationMetricValueDerivativePerThreadVariables will store temporary results for each thread
* and finally compute metric and derivative in overloaded AfterThreadedExecution
*/
/* subtract the average of pixels (computed during InitializeIteration) */
const InternalComputationValueType & f1 = fixedImageValue - this->m_CorrelationAssociate->m_AverageFix;
const InternalComputationValueType & m1 = movingImageValue - this->m_CorrelationAssociate->m_AverageMov;
AlignedCorrelationMetricValueDerivativePerThreadStruct & cumsum = this->m_CorrelationMetricValueDerivativePerThreadVariables[threadId];
cumsum.f += f1;
cumsum.m += m1;
cumsum.f2 += f1 * f1;
cumsum.m2 += m1 * m1;
cumsum.fm += f1 * m1;
if( this->m_CorrelationAssociate->GetComputeDerivative() )
{
/* Use a pre-allocated jacobian object for efficiency */
typedef typename TImageToImageMetric::JacobianType & JacobianReferenceType;
JacobianReferenceType jacobian = this->m_GetValueAndDerivativePerThreadVariables[threadId].MovingTransformJacobian;
JacobianReferenceType jacobianPositional = this->m_GetValueAndDerivativePerThreadVariables[threadId].MovingTransformJacobianPositional;
/** For dense transforms, this returns identity */
this->m_CorrelationAssociate->GetMovingTransform()->
ComputeJacobianWithRespectToParametersCachedTemporaries(virtualPoint,
jacobian,
jacobianPositional);
for (unsigned int par = 0; par < this->m_CorrelationAssociate->GetNumberOfLocalParameters(); par++)
{
InternalComputationValueType sum = NumericTraits< InternalComputationValueType >::ZeroValue();
for (SizeValueType dim = 0; dim < ImageToImageMetricv4Type::MovingImageDimension; dim++)
{
sum += movingImageGradient[dim] * jacobian(dim, par);
}
cumsum.fdm[par] += f1 * sum;
cumsum.mdm[par] += m1 * sum;
}
}
return true;
}
} // end namespace itk
#endif
|