1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkGaussianDerivativeOperator.h"
#include "itkStdStreamStateSave.h"
namespace
{
bool TestGaussianOperator( double variance,
double error,
unsigned int width,
unsigned int order )
{
typedef itk::GaussianDerivativeOperator< double, 1 > GaussianOp;
std::cout << "Testing variance: " << variance
<< " error: " << error
<< " width: " << width
<< " order: " << order
<< std::endl;
GaussianOp op;
op.SetVariance( variance );
op.SetMaximumError( error );
op.SetMaximumKernelWidth( width );
op.SetOrder( order );
op.SetNormalizeAcrossScale( false );
op.CreateDirectional();
std::cout.precision(16);
double total = std::accumulate( op.Begin(), op.End(), 0.0 );
std::cout << "total: " << total << std::endl;
if ( order == 0 && std::abs(total - 1.0) > itk::NumericTraits<double>::epsilon()*32 )
{
std::cerr << "FAILURE: expected coefficients to sum to 1.0! Actual: " << total << std::endl;
}
else if ( order != 0 && std::abs(total) > itk::NumericTraits<double>::epsilon()*32 )
{
std::cerr << "FAILURE: expected coefficients to sum to 0.0! Actual: " << total << std::endl;
}
else
{
return true;
}
std::cout << "---operator---" << std::endl;
GaussianOp::Iterator i = op.Begin();
i += op.Size()/2;
for(; i != op.End(); ++i )
{
std::cout << *i << std::endl;
}
std::cout << "---end--" << std::endl;
return false;
}
}
int itkGaussianDerivativeOperatorTest( int argc, char *argv[] )
{
// Save the format stream variables for std::cout
// They will be restored when coutState goes out of scope
// scope.
itk::StdStreamStateSave coutState(std::cout);
if (argc == 5 )
{
double variance = atof(argv[1]);
double error = atof(argv[2]);
unsigned int width = atoi(argv[3]);
unsigned int order = atoi(argv[4]);
TestGaussianOperator( variance, error, width, order );
return EXIT_FAILURE;
}
else if ( argc > 1 )
{
std::cerr << "Usage: " << argv[0] << " [ variance error width order ]" << std::endl;
return EXIT_FAILURE;
}
// At this point, obviously, argc <= 1. In some scenario's, argc == 0, typically when
// the test function is called from the interactive TestDriver commandline interface,
// by having the user entering its test number. On the other hand, argc == 1 when the
// the TestDriver has the name of the test function as its only commandline argument.
// In either way the tests below here should be performed.
// Exercise code
typedef itk::GaussianDerivativeOperator< double, 3 > GaussianOp;
GaussianOp op1;
GaussianOp op2;
// print self method
std::cout << op1;
// assignement
op2 = op1;
bool pass = true;
std::cout << "====== DerivativeOperator ======" << std::endl;
pass &= TestGaussianOperator( .2, .001, 30, 0 );
pass &= TestGaussianOperator( .2, .001, 30, 1 );
pass &= TestGaussianOperator( .2, .001, 30, 2 );
pass &= TestGaussianOperator( .2, .001, 30, 3 );
pass &= TestGaussianOperator( .2, .001, 30, 4 );
pass &= TestGaussianOperator( 1, .001, 30, 0 );
pass &= TestGaussianOperator( 1, .001, 30, 1 );
pass &= TestGaussianOperator( 1, .001, 30, 2 );
pass &= TestGaussianOperator( 1, .001, 30, 3 );
pass &= TestGaussianOperator( 1, .001, 30, 4 );
pass &= TestGaussianOperator( 10, .001, 30, 0 );
pass &= TestGaussianOperator( 10, .001, 30, 1 );
pass &= TestGaussianOperator( 10, .0001, 100, 1 );
pass &= TestGaussianOperator( 50, .001, 300, 0 );
if ( pass )
{
return EXIT_SUCCESS;
}
return EXIT_FAILURE;
}
|