File: itkNumericsTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (77 lines) | stat: -rw-r--r-- 2,415 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#include <iostream>

#include "vnl/algo/vnl_svd.h"

template <typename T>
void print_vnl_matrix(T& mat)
{
  std::cout << mat;
  for(unsigned int r = 0; r < mat.rows(); r++)
    {
    for(unsigned int c = 0; c < mat.columns(); c++)
      std::cout << mat(r, c) << " ";
    std::cout << std::endl;
    }
}

template <typename V>  // V is often double or float
vnl_matrix<V> solve_with_warning(vnl_matrix<V>const& M,
         vnl_matrix<V>const& B)
{
  // Take svd of vnl_matrix<V> M, setting singular values
  // smaller than 1e-8 to 0, and hold the result.
  vnl_svd<V> svd(M, 1e-8);
  // Check for rank-deficiency
  if (svd.singularities() > 1)
    std::cout << "Warning: Singular matrix, condition = " << svd.well_condition() << std::endl;
  return svd.solve(B);
}


int test_svd() {
  double data[] = { 1, 1, 1,  1, 2, 3,  1, 3, 6};
  vnl_matrix<double> M (data, 3, 3);
  vnl_matrix<double> B (3, 1, 7.0); // column vector [7 7 7]^T
  vnl_matrix<double> result = solve_with_warning(M,B);
  std::cout << "Original svd problem solution" << std::endl;
  print_vnl_matrix(result);
  M(2,2)=5; result = solve_with_warning(M,B);
  std::cout << std::endl << "Modified svd problem solution" << std::endl;
  print_vnl_matrix(result);
  return 0;
}

int itkNumericsTest(int, char* [] )
{
  test_svd();
  double data[] = { 1, 1, 1,  1, 2, 3,  1, 3, 6};
  vnl_matrix<double> mat(data, 3, 3);
  std::cout << std::endl << "A matrix" << std::endl;
  for(unsigned int r = 0; r < mat.rows(); r++)
    {
    for(unsigned int c = 0; c < mat.rows(); c++)
      {
      std::cout << mat(r, c) << " ";
      }
    std::cout << std::endl;
    }

  return 0;
}