1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
/*=========================================================================
*
* Portions of this file are subject to the VTK Toolkit Version 3 copyright.
*
* Copyright (c) Ken Martin, Will Schroeder, Bill Lorensen
*
* For complete copyright, license and disclaimer of warranty information
* please refer to the NOTICE file at the top of the ITK source tree.
*
*=========================================================================*/
#include <iostream>
#include "itkBSplineInterpolateImageFunction.h"
#include "makeRandomImageBsplineInterpolator.h"
typedef double InputPixelType;
typedef double CoordRepType;
// Set up for 1D Images
enum { ImageDimension1D = 1 };
typedef itk::Image< InputPixelType, ImageDimension1D > ImageType1D;
typedef ImageType1D::Pointer ImageTypePtr1D;
typedef ImageType1D::SizeType SizeType1D;
typedef itk::BSplineInterpolateImageFunction<ImageType1D,CoordRepType> InterpolatorType1D;
// typedef InterpolatorType1D::IndexType IndexType1D;
typedef InterpolatorType1D::PointType PointType1D;
typedef InterpolatorType1D::ContinuousIndexType ContinuousIndexType1D;
void set1DInterpData(ImageType1D::Pointer);
// Set up for 2D Images
enum { ImageDimension2D = 2 };
typedef itk::Image< InputPixelType, ImageDimension2D > ImageType2D;
typedef ImageType2D::Pointer ImageTypePtr2D;
typedef ImageType2D::SizeType SizeType2D;
typedef itk::BSplineInterpolateImageFunction<ImageType2D,CoordRepType> InterpolatorType2D;
// typedef InterpolatorType2D::IndexType IndexType2D;
typedef InterpolatorType2D::PointType PointType2D;
typedef InterpolatorType2D::ContinuousIndexType ContinuousIndexType2D;
void set2DInterpData(ImageType2D::Pointer);
// Set up for 3D Images
enum { ImageDimension3D = 3 };
typedef itk::Image< InputPixelType, ImageDimension3D > ImageType3D;
typedef ImageType3D::Pointer ImageTypePtr3D;
typedef ImageType3D::SizeType SizeType3D;
typedef itk::BSplineInterpolateImageFunction<ImageType3D,CoordRepType> InterpolatorType3D;
typedef InterpolatorType3D::IndexType IndexType3D;
typedef InterpolatorType3D::PointType PointType3D;
typedef InterpolatorType3D::ContinuousIndexType ContinuousIndexType3D;
typedef itk::Image< unsigned int, ImageDimension3D > ImageIntegerType3D;
typedef itk::BSplineInterpolateImageFunction<ImageIntegerType3D,CoordRepType> InterpolatorIntegerType3D;
typedef InterpolatorIntegerType3D::IndexType IndexIntegerType3D;
typedef InterpolatorIntegerType3D::PointType PointIntegerType3D;
typedef InterpolatorIntegerType3D::ContinuousIndexType ContinuousIntegerIndexType3D;
void set3DDerivativeData(ImageType3D::Pointer);
template<typename TImage>
void set3DInterpData(typename TImage::Pointer imgPtr)
{
SizeType3D size = {{80,40,30}};
/* Allocate a simple test image */
typename TImage::RegionType region;
region.SetSize( size );
imgPtr->SetLargestPossibleRegion( region );
imgPtr->SetBufferedRegion( region );
imgPtr->Allocate();
/* Set origin and spacing of physical coordinates */
/* Initialize the image contents */
IndexType3D index;
for (unsigned int slice = 0; slice < size[2]; slice++) {
index[2] = slice;
for (unsigned int row = 0; row < size[1]; row++) {
index[1] = row;
for (unsigned int col = 0; col < size[0]; col++) {
index[0] = col;
imgPtr->SetPixel(index, slice+row+col);
}
}
}
}
/**
* Test a geometric point. Returns true if test has passed,
* returns false otherwise
*/
template <typename TInterpolator, typename PointType>
bool TestGeometricPoint(
const TInterpolator * interp,
const PointType& point,
bool isInside,
double trueValue )
{
std::cout << " Point: " << point;
bool bvalue = interp->IsInsideBuffer( point );
std::cout << " Inside: " << bvalue << " ";
if( bvalue != isInside )
{
std::cout << "*** Error: inside should be " << isInside << std::endl;
return false;
}
if( isInside )
{
double value = interp->Evaluate( point );
std::cout << " Value: " << value;
if( itk::Math::abs( value - trueValue ) > 1e-9 )
{
std::cout << "*** Error: value should be " << trueValue << std::endl;
return false;
}
}
std::cout << std::endl;
return true;
}
/**
* Test a continuous index. Returns true if test has passed,
* returns false otherwise
*/
template<typename TInterpolator, typename ContinuousIndexType>
bool TestContinuousIndex(
const TInterpolator * interp,
const ContinuousIndexType& index,
bool isInside,
double trueValue )
{
std::cout << " Index: " << index;
bool bvalue = interp->IsInsideBuffer( index );
std::cout << " Inside: " << bvalue;
if( bvalue != isInside )
{
std::cout << "*** Error: inside should be " << isInside << std::endl;
return false;
}
if( isInside )
{
double value = interp->EvaluateAtContinuousIndex( index );
std::cout << " Value: " << value;
if( itk::Math::abs( value - trueValue ) > 1e-4 )
{
std::cout << "*** Error: value should be " << trueValue << std::endl;
return false;
}
}
std::cout << std::endl;
return true;
}
/**
* Test a continuous index Derivative. Returns true if test has passed,
* returns false otherwise
*/
template<typename TInterpolator, typename ContinuousIndexType>
bool TestContinuousIndexDerivative(
const TInterpolator * interp,
const ContinuousIndexType& index,
bool isInside,
double * trueValue )
{
std::cout << " Index: " << index;
bool bvalue = interp->IsInsideBuffer( index );
std::cout << " Inside: " << bvalue << "\n";
if( bvalue != isInside )
{
std::cout << "*** Error: inside should be " << isInside << std::endl;
return false;
}
if( isInside )
{
typename TInterpolator::CovariantVectorType value;
double value2 = interp->EvaluateAtContinuousIndex( index );
std::cout << "Interpolated Value: " << value2 << "\n";
value = interp->EvaluateDerivativeAtContinuousIndex( index );
std::cout << " Value: ";
for (int i=0; i < ImageDimension3D; i++)
{
if (i != 0)
{
std::cout << ", ";
}
std::cout << value[i];
if ( itk::Math::abs( value[i] - trueValue[i] ) > 1e-4 )
{
std::cout << "*** Error: value should be " << trueValue[i] << std::endl;
return false;
}
}
}
std::cout << std::endl;
return true;
}
// Run a series of tests to validate the 1D
// cubic spline implementation.
int test1DCubicSpline()
{
int flag = 0;
// Allocate a simple test image
ImageTypePtr1D image = ImageType1D::New();
set1DInterpData(image);
// Set origin and spacing of physical coordinates
double origin [] = { 0.5 };
double spacing[] = { 0.1 };
image->SetOrigin(origin);
image->SetSpacing(spacing);
// Create and initialize the interpolator
InterpolatorType1D::Pointer interp = InterpolatorType1D::New();
interp->SetInputImage(image);
interp->Print( std::cout );
// Test evaluation at continuous indices and corresponding
//gemetric points
std::cout << "Testing 1D Cubic B-Spline:\n";
std::cout << "Evaluate at: " << std::endl;
ContinuousIndexType1D cindex;
PointType1D point;
bool passed;
// These values test 1) near border,
// 2) inside
// 3) integer value
// 4) outside image
#define NPOINTS 5 // number of points
itk::SpacePrecisionType darray1[NPOINTS] = {1.4, 8.9, 10.0, 40.0, -0.3};
double truth[NPOINTS] = {334.41265437584, 18.158173426944, 4.0000, 0, 442.24157192006658};
bool b_Inside[NPOINTS] = {true, true, true, false, true};
// an integer position inside the image
for (int ii=0; ii < NPOINTS; ii++)
{
cindex = ContinuousIndexType1D(&darray1[ii]);
passed = TestContinuousIndex<InterpolatorType1D, ContinuousIndexType1D >( interp, cindex, b_Inside[ii], truth[ii] );
if( !passed ) flag += 1;
image->TransformContinuousIndexToPhysicalPoint( cindex, point );
passed = TestGeometricPoint<InterpolatorType1D, PointType1D>( interp, point, b_Inside[ii], truth[ii] );
if( !passed ) flag += 1;
}
return (flag);
}
int test2DSpline()
{
int flag = 0;
/* Allocate a simple test image */
ImageTypePtr2D image = ImageType2D::New();
set2DInterpData(image);
/* Set origin and spacing of physical coordinates */
double origin [] = { 0.5, 1.0 };
double spacing[] = { 0.1, 0.5 };
image->SetOrigin(origin);
image->SetSpacing(spacing);
ImageType2D::IndexType startIndex = image->GetRequestedRegion().GetIndex();
/* Create and initialize the interpolator */
for (unsigned int splineOrder = 0; splineOrder<=5; splineOrder++)
{
InterpolatorType2D::Pointer interp = InterpolatorType2D::New();
interp->SetSplineOrder(splineOrder);
std::cout << "SplineOrder: " << interp->GetSplineOrder() << std::endl;
interp->SetInputImage(image);
interp->Print( std::cout );
/* Test evaluation at continuous indices and corresponding
gemetric points */
std::cout << "Testing 2D B-Spline of Order "<< splineOrder << ":\n";
std::cout << "Evaluate at: " << std::endl;
ContinuousIndexType2D cindex;
PointType2D point;
bool passed;
// These values test 1) near border,
// 2) inside
// 3) integer value
// 4) outside image
#define NPOINTS2 4 // number of points
itk::SpacePrecisionType darray1[NPOINTS2][2] = {{0.1, 0.2}, {3.4, 5.8}, {4.0, 6.0}, { 2.1, 8.0}};
double truth[NPOINTS2][6] = {{154.5, 140.14, 151.86429192392, 151.650316034, 151.865916515, 151.882483111},
{ 0, 13.84, 22.688125812495, 22.411473093, 22.606968306, 22.908345604},
{ 36.2, 36.2, 36.2, 36.2, 36.2, 36.2 },
{0, 0, 0,0,0,0}};
bool b_Inside[NPOINTS2] = {true, true, true, false};
// an integer position inside the image
for (int ii=0; ii < NPOINTS2; ii++)
{
cindex = ContinuousIndexType2D(&darray1[ii][0]);
cindex[0] += startIndex[0];
cindex[1] += startIndex[1];
passed = TestContinuousIndex<InterpolatorType2D, ContinuousIndexType2D >( interp, cindex, b_Inside[ii], truth[ii][splineOrder] );
if( !passed ) flag += 1;
image->TransformContinuousIndexToPhysicalPoint( cindex, point );
passed = TestGeometricPoint<InterpolatorType2D, PointType2D>( interp, point, b_Inside[ii], truth[ii][splineOrder ] );
if( !passed ) flag += 1;
}
} // end of splineOrder
return (flag);
}
int test3DSpline()
{
int flag = 0;
/* Allocate a simple test image */
ImageTypePtr3D image = ImageType3D::New();
set3DInterpData<ImageType3D> (image);
/* Set origin and spacing of physical coordinates */
double origin [] = { 0.5, 1.0, 1.333};
double spacing[] = { 0.1, 0.5, 0.75 };
image->SetOrigin(origin);
image->SetSpacing(spacing);
/* Create and initialize the interpolator */
for (int splineOrder = 2; splineOrder<=5; splineOrder++)
{
InterpolatorType3D::Pointer interp = InterpolatorType3D::New();
interp->SetSplineOrder(splineOrder);
interp->SetInputImage(image);
interp->Print( std::cout );
/* Test evaluation at continuous indices and corresponding
gemetric points */
std::cout << "Testing 3D B-Spline of Order "<< splineOrder << ":\n";
std::cout << "Evaluate at: " << std::endl;
ContinuousIndexType3D cindex;
PointType3D point;
bool passed;
// These values test
// 1) near border,
// 2) inside
// 3) integer value
// 4) outside image
#define NPOINTS3 5 // number of points
itk::SpacePrecisionType darray1[NPOINTS3][ImageDimension3D]
= {{0.1, 20.1, 28.4}, {21.58, 34.5, 17.2}, {10, 20, 12}, {15, 20.2, 31}, {2, 0.3, -0.3}};
double truth[NPOINTS3][4] = {{48.621593795, 48.651173138, 48.656914878, 48.662256571},
{73.280126903, 73.280816965, 73.282780615, 73.285315943},
{42.0, 42.0, 42.0, 42.0},
{0, 0, 0, 0},
{ 2.2545584407825165, 2.2722384004239382, 2.2533523347849744, 2.2516795363567588}};
bool b_Inside[NPOINTS3] = {true, true, true, false, true};
// an integer position inside the image
for (int ii=0; ii < NPOINTS3; ii++)
{
cindex = ContinuousIndexType3D(&darray1[ii][0]);
passed = TestContinuousIndex<InterpolatorType3D, ContinuousIndexType3D >( interp, cindex, b_Inside[ii], truth[ii][splineOrder -2] );
if( !passed ) flag += 1;
image->TransformContinuousIndexToPhysicalPoint( cindex, point );
passed = TestGeometricPoint<InterpolatorType3D, PointType3D>( interp, point, b_Inside[ii], truth[ii][splineOrder -2] );
if( !passed ) flag += 1;
}
} // end of splineOrder
return (flag);
}
int test3DSplineDerivative()
{
int flag = 0;
/* Allocate a simple test image */
ImageTypePtr3D image = ImageType3D::New();
set3DDerivativeData(image);
/* Set origin and spacing of physical coordinates */
double origin [] = { 0.0, 0.0, 0.0};
double spacing[] = { 1,1,1 };
image->SetOrigin(origin);
image->SetSpacing(spacing);
/* Create and initialize the interpolator */
for (int splineOrder = 1; splineOrder<=5; splineOrder++)
{
InterpolatorType3D::Pointer interp = InterpolatorType3D::New();
interp->SetSplineOrder(splineOrder);
interp->SetInputImage(image);
interp->Print( std::cout );
/* Test evaluation at continuous indices and corresponding
gemetric points */
std::cout << "Testing Derivatives of 3D B-Spline of Order "<< splineOrder << ":\n";
std::cout << "Evaluate at: " << std::endl;
ContinuousIndexType3D cindex;
PointType3D point;
bool passed;
// These values test
// 1) near border,
// 2) inside
// 3) integer value
// 4) outside image
#define NPOINTS4 4 // number of points
itk::SpacePrecisionType darray1[NPOINTS4][ImageDimension3D] = {{25.3,26.8,24.5}, {21.0, 1.4, 0.6}, {18, 31, 10 }, { 4.3, 17.9, 42} };
// Calculated Truth is: {19.4158,5,-24}, {0.9,5,71.6}, {-7.2, 5, 34}, {0,0,0}
// TODO: Value near border is way off, is this an algorithm problem? Also,
// Is error for 1st order splines in the expected range?
double truth[5][NPOINTS4][ImageDimension3D] = {
{ {23.6, 5,-24}, {0, 5, 72.0}, {-3.0, 5, 32}, {0,0,0} },
{ {19.345, 5,-24}, {0.875, 4.8873, 98.6607}, {-7.525, 5, 34}, {0,0,0} },
{ {19.399, 5,-24}, {0.9, 4.95411, 92.9006}, {-7.2, 5, 33.9999}, {0,0,0} },
{ {19.4164,5,-24}, {0.9, 4.9925, 94.5082}, {-7.2, 5.00044, 33.9976}, {0,0,0} },
{ {19.4223,5,-24}, {0.900157, 5.0544, 93.8607}, {-7.19929, 5.00189, 33.9879}, {0,0,0} }};
bool b_Inside[NPOINTS4] = {true, true, true, false};
// an integer position inside the image
for (int ii=0; ii < NPOINTS4; ii++)
{
cindex = ContinuousIndexType3D(&darray1[ii][0]);
passed = TestContinuousIndexDerivative<InterpolatorType3D, ContinuousIndexType3D >( interp, cindex, b_Inside[ii], &truth[splineOrder - 1][ii][0] );
if( !passed ) flag += 1;
}
} // end of splineOrder
return (flag);
}
int testInteger3DSpline()
{
int flag = 0;
/* Allocate a simple test image */
ImageIntegerType3D::Pointer image = ImageIntegerType3D::New();
set3DInterpData<ImageIntegerType3D> (image);
/* Set origin and spacing of physical coordinates */
double origin [] = { 0.5, 1.0, 1.333};
double spacing[] = { 0.1, 0.5, 0.75 };
image->SetOrigin(origin);
image->SetSpacing(spacing);
/* Create and initialize the interpolator */
for (int splineOrder = 2; splineOrder<=5; splineOrder++)
{
InterpolatorIntegerType3D::Pointer interp = InterpolatorIntegerType3D::New();
interp->SetSplineOrder(splineOrder);
interp->SetInputImage(image);
interp->Print( std::cout );
/* Test evaluation at continuous indices and corresponding
gemetric points */
std::cout << "Testing 3D Integer B-Spline of Order "<< splineOrder << ":\n";
std::cout << "Evaluate at: " << std::endl;
ContinuousIntegerIndexType3D cindex;
PointIntegerType3D point;
bool passed;
// These values test
// 1) near border,
// 2) inside
// 3) integer value
// 4) outside image
#define NPOINTS4b 4 // number of points
// Note: the answers should be the same as for the test3DSpline
itk::SpacePrecisionType darray1[NPOINTS4b][ImageDimension3D] = {{0.1, 20.1, 28.4}, {21.58, 34.5, 17.2 }, {10, 20, 12}, { 15, 20.2, 31}};
double truth[NPOINTS4b][4] = {{48.621593795, 48.651173138, 48.656914878, 48.662256571},
{ 73.280126903, 73.280816965, 73.282780615, 73.285315943},
{ 42.0, 42.0, 42.0, 42.0},
{0,0,0,0}};
bool b_Inside[NPOINTS4b] = {true, true, true, false};
// an integer position inside the image
for (int ii=0; ii < NPOINTS4b; ii++)
{
cindex = ContinuousIntegerIndexType3D(&darray1[ii][0]);
passed = TestContinuousIndex<InterpolatorIntegerType3D, ContinuousIntegerIndexType3D >( interp, cindex, b_Inside[ii], truth[ii][splineOrder -2] );
if( !passed ) flag += 1;
image->TransformContinuousIndexToPhysicalPoint( cindex, point );
passed = TestGeometricPoint<InterpolatorIntegerType3D, PointIntegerType3D>( interp, point, b_Inside[ii], truth[ii][splineOrder -2] );
if( !passed ) flag += 1;
}
} // end of splineOrder
return (flag);
}
//Test to verify that EvaluateDerivativeAtContinuousIndex and EvaluateValueAndDerivativeAtContinuousIndex
//produce identical results.
int testEvaluateValueAndDerivative(void)
{
const unsigned int ImageDimension = 2;
typedef float PixelType;
typedef itk::Image<PixelType,ImageDimension> ImageType;
typedef itk::BSplineInterpolateImageFunction<ImageType,double, double> BSplineInterpolatorFunctionType;
const unsigned int SplineOrder = 3;
BSplineInterpolatorFunctionType::Pointer interpolator = makeRandomImageInterpolator<BSplineInterpolatorFunctionType>(SplineOrder);
/** Test the EvaluateDerivative and EvaluateValueAndDerivative functions **/
typedef BSplineInterpolatorFunctionType::ContinuousIndexType ContinuousIndexType;
ContinuousIndexType x;
x[0] = 15.1;
x[1] = 15.2;
typedef BSplineInterpolatorFunctionType::CovariantVectorType CovariantVectorType;
const CovariantVectorType dx_1 = interpolator->EvaluateDerivativeAtContinuousIndex( x );
CovariantVectorType dx_2;
BSplineInterpolatorFunctionType::OutputType value;
interpolator->EvaluateValueAndDerivativeAtContinuousIndex( x, value, dx_2 );
for( unsigned int i = 0; i < ImageDimension; ++i )
{
std::cout << std::scientific << value << std::endl;
std::cout << std::scientific << "EvaluateDerivative: " << dx_1 << std::endl;
std::cout << std::scientific << "EvaluateValueAndDerivative: " << dx_2 << std::endl;
if( itk::Math::abs( dx_1[i] - dx_2[i] ) > 1e-5 )
{
std::cout << "[ERROR]" << dx_1[i] << " != " << dx_2[i] << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
int
itkBSplineInterpolateImageFunctionTest(
int itkNotUsed(argc),
char * itkNotUsed(argv) [] )
{
int flag = 0; /* Did this test program work? */
std::cout << "Testing B Spline interpolation methods:\n";
flag += test1DCubicSpline();
flag += test2DSpline();
flag += test3DSpline();
flag += test3DSplineDerivative();
flag += testInteger3DSpline();
flag += testEvaluateValueAndDerivative();
/* Return results of test */
if (flag != 0) {
std::cout << "*** " << flag << " tests failed" << std::endl;
return EXIT_FAILURE; }
else {
std::cout << "All tests successfully passed" << std::endl;
return EXIT_SUCCESS; }
}
void set1DInterpData(ImageType1D::Pointer imgPtr)
{
SizeType1D size = {{36}};
double mydata[36] = {454.0000, 369.4000, 295.2000, 230.8000, 175.6000, 129.0000, 90.4000, 59.2000, 34.8000, 16.6000, 4.0000, -3.6000, -6.8000, -6.2000,
-2.4000, 4.0000, 12.4000, 22.2000, 32.8000, 43.6000, 54.0000, 63.4000, 71.2000, 76.8000, 79.6000, 79.0000, 74.4000, 65.2000,
50.8000, 30.6000, 4.0000, -29.6000, -70.8000, -120.2000, -178.4000, -246.0000 };
ImageType1D::RegionType region;
region.SetSize( size );
imgPtr->SetLargestPossibleRegion( region );
imgPtr->SetBufferedRegion( region );
imgPtr->Allocate();
typedef itk::ImageRegionIterator<ImageType1D> InputIterator;
InputIterator inIter( imgPtr, region );
int j = 0;
while( !inIter.IsAtEnd() )
{
inIter.Set(mydata[j]);
++inIter;
++j;
}
}
void set2DInterpData(ImageType2D::Pointer imgPtr)
{
SizeType2D size = {{7,7}};
double mydata[ 49 ] = { 154.5000, 82.4000, 30.9000, 0, -10.3000, 0, 30.9000 ,
117.0000, 62.4000, 23.4000, 0, -7.8000, 0, 23.4000 ,
18.0000, 9.6000, 3.6000, 0, -1.2000, 0, 3.6000 ,
-120.0000, -64.0000, -24.0000, 0, 8.0000, 0, -24.0000 ,
-274.5000, -146.4000, -54.9000, 0, 18.3000, 0, -54.9000 ,
-423.0000, -225.6000, -84.6000, 0, 28.2000, 0, -84.6000 ,
-543.0000, -289.6000, -108.6000, 0, 36.2000, 0, -108.6000 };
ImageType2D::IndexType index;
index.Fill( 10 );
ImageType2D::RegionType region;
region.SetSize( size );
region.SetIndex( index );
imgPtr->SetRegions( region );
imgPtr->Allocate();
typedef itk::ImageRegionIterator<ImageType2D> InputIterator;
InputIterator inIter( imgPtr, region );
int j = 0;
while( !inIter.IsAtEnd() )
{
inIter.Set(mydata[j]);
++inIter;
++j;
}
}
void set3DDerivativeData(ImageType3D::Pointer imgPtr)
{
SizeType3D size = {{41,41,41}};
/* Allocate a simple test image */
ImageType3D::RegionType region;
region.SetSize( size );
imgPtr->SetLargestPossibleRegion( region );
imgPtr->SetBufferedRegion( region );
imgPtr->Allocate();
/* Set origin and spacing of physical coordinates */
/* Initialize the image contents */
// Note [x,y,z] = [x,y,z] - 20 so that image ranges from -20 + 20;
// f(x) = 0.1x^4 - 0.5x^3 + 2x - 43
// f(y) = 5y + 7
// f(z) = -2z^2 - 6z + 10
// df(x)/dx = 0.4x^3 - 1.5x^2 + 2
// df(y)/dy = 5
// df(z)/dz = -4z - 6
double value;
double slice1, row1, col1;
IndexType3D index;
for (unsigned int slice = 0; slice < size[2]; slice++) {
index[2] = slice;
slice1 = slice - 20.0; // Center offset
for (unsigned int row = 0; row < size[1]; row++) {
index[1] = row;
row1 = row - 20.0; // Center
for (unsigned int col = 0; col < size[0]; col++) {
index[0] = col;
col1 = col - 20.0; //Center
value = 0.1*col1*col1*col1*col1 - 0.5* col1*col1*col1 + 2.0*col1 - 43.0;
value += 5.0*row1 + 7.0;
value += -2.0*slice1*slice1 - 6.0* slice1 + 10.0;
imgPtr->SetPixel(index, value);
}
}
}
}
|