File: itkGaussianInterpolateImageFunctionTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (277 lines) | stat: -rw-r--r-- 8,897 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkImage.h"
#include "itkVectorImage.h"
#include "itkGaussianInterpolateImageFunction.h"
#include "itkMath.h"
#include "itkTestingMacros.h"

// VS 2015 has a bug when building release with the heavily nested for
// loops iterating too many times. This turns off optimization to
// allow the tests to pass.
//
#if _MSC_VER == 1900
# pragma optimize( "", off )
#endif

// Allows testing up to TDimension = 4
template< unsigned int TDimension >
int RunTest( void )
{
  typedef float                                         PixelType;
  const   unsigned int                                  Dimensions = TDimension;

  typedef itk::Image<PixelType, TDimension>             ImageType;
  typedef typename ImageType::RegionType                RegionType;
  typedef typename RegionType::SizeType                 SizeType;
  typedef typename ImageType::IndexType                 IndexType;

  typedef float                                         CoordRepType;
  typedef typename itk::ContinuousIndex<CoordRepType, Dimensions>
                                                        ContinuousIndexType;
  typedef typename ContinuousIndexType::ValueType       AccumulatorType;
  typedef typename itk::Point<CoordRepType, Dimensions> PointType;

  typedef typename itk::GaussianInterpolateImageFunction<
                                                      ImageType,
                                                      CoordRepType >
                                                      InterpolatorType;

  typename ImageType::Pointer image = ImageType::New();

  IndexType start;
  start.Fill( 0 );

  SizeType size;
  const int dimMaxLength = 3;
  size.Fill( dimMaxLength );

  RegionType region;
  region.SetSize( size );
  region.SetIndex( start );

  image->SetRegions( region );
  image->Allocate();

  typename ImageType::PointType     origin;
  typename ImageType::SpacingType   spacing;

  origin.Fill( 0.0 );
  spacing.Fill( 1.0 );

  image->SetOrigin( origin );
  image->SetSpacing( spacing );

  image->Print( std::cout );

  // Setup for testing up to Dimension = 4
  unsigned int dimLengths[4] = {1,1,1,1};
  for( unsigned int ind = 0; ind < Dimensions; ind++ )
    {
    dimLengths[ind] = dimMaxLength;
    }

  //
  // Fill up the image values with the function
  //
  // Intensity = f(d1[,d2[,d3[,d4]]]) = 3*d1 [+ d2 [+ d3 [+ d4] ] ]
  //
  IndexType index;
  PixelType value;
  unsigned int dimIt[4];
  std::cout << "Image Data: " << std::endl;
  for (dimIt[3] = 0; dimIt[3] < dimLengths[3]; dimIt[3]++)
    {
    for (dimIt[2] = 0; dimIt[2] < dimLengths[2]; dimIt[2]++)
      {
      std::cout << "* dimIt[3], dimIt[2]: " << dimIt[3] << ", " << dimIt[2]
                << std::endl;
      for (dimIt[1] = 0; dimIt[1] < dimLengths[1]; dimIt[1]++)
        {
        for (dimIt[0] = 0; dimIt[0] < dimLengths[0]; dimIt[0]++)
          {
          value = 3*dimIt[0];
          index[0] = dimIt[0];
          for( unsigned int ind = 1; ind < Dimensions; ind++ )
          {
          value += dimIt[ind];
          index[ind] = dimIt[ind];
          }
          image->SetPixel( index, value );

          std::cout << value << " ";
          }
        std::cout << std::endl;
        }
      }
    }

  typename InterpolatorType::Pointer interpolator = InterpolatorType::New();

  interpolator->SetInputImage( image );

  double sigma[TDimension];
  for( unsigned int d = 0; d < TDimension; d++ )
    {
    sigma[d] = 1.0;
    }
  AccumulatorType alpha = 1.0;

  interpolator->SetParameters( sigma, alpha );

  for( unsigned int d = 0; d < TDimension; d++ )
    {
    TEST_SET_GET_VALUE( sigma[d], interpolator->GetSigma()[d] );
    }

  TEST_SET_GET_VALUE( alpha, interpolator->GetAlpha() );

  // Test EvaluateAtContinuousIndex
  // Use the last index for convenience
  typename InterpolatorType::ContinuousIndexType cindex = index;
  if ( interpolator->IsInsideBuffer( index ) )
    {
    typename InterpolatorType::OutputType interpolatedValue;
    interpolatedValue = interpolator->EvaluateAtContinuousIndex(cindex);

    itk::Math::FloatAlmostEqual( (float)interpolatedValue, (float)value );
    }

  const AccumulatorType incr = 0.2;

  const AccumulatorType tolerance = 5e-6;

  PointType point;
  AccumulatorType testLengths[4] = {1,1,1,1};
  for( unsigned int ind = 0; ind < Dimensions; ind++ )
  {
  testLengths[ind] = dimMaxLength-1;
  }
  AccumulatorType steps[4];
  AccumulatorType dimItf[4];
  for (dimItf[3] = 0; dimItf[3] < testLengths[3]; dimItf[3]++)
    {
    for (dimItf[2] = 0; dimItf[2] < testLengths[2]; dimItf[2]++)
      {
      for (dimItf[1] = 0; dimItf[1] < testLengths[1]; dimItf[1]++)
        {
        for (dimItf[0] = 0; dimItf[0] < testLengths[0]; dimItf[0]++)
          {
          for (steps[3] = 0; steps[3] < dimItf[3] + 1.01; steps[3]+=incr)
            {
            for (steps[2] = 0; steps[2] < dimItf[2] + 1.01; steps[2]+=incr)
              {
              for (steps[1] = 0; steps[1] < dimItf[1] + 1.01; steps[1]+=incr)
                {
                for (steps[0] = 0; steps[0] < dimItf[0] + 1.01; steps[0]+=incr)
                  {
                  AccumulatorType expectedValue = 3*steps[0];
                  point[0] = steps[0];
                  for( unsigned int ind = 1; ind < Dimensions; ind++ )
                  {
                  expectedValue += steps[ind];
                  point[ind]=steps[ind];
                  }

                  if( interpolator->IsInsideBuffer( point ) )
                    {
                    const AccumulatorType computedValue = interpolator->Evaluate( point );

                    if( ! itk::Math::FloatAlmostEqual( expectedValue, computedValue, 7, tolerance ) )
                      {
                      return EXIT_FAILURE;
                      }
                    }
                  }
                }
              }
            }
          }
        }
      }
    }
  return EXIT_SUCCESS;
}

int itkGaussianInterpolateImageFunctionTest( int, char*[] )
{
  typedef float                                         PixelType;
  const   unsigned int                                  Dimension = 1;

  typedef itk::Image< PixelType, Dimension >            ImageType;
  typedef float                                         CoordRepType;

  typedef itk::GaussianInterpolateImageFunction< ImageType,
    CoordRepType > InterpolatorType;

  InterpolatorType::Pointer interpolator = InterpolatorType::New();

  EXERCISE_BASIC_OBJECT_METHODS( interpolator, GaussianInterpolateImageFunction,
    InterpolateImageFunction );


  // Test separately for images of 1 through 4 dimensions because this function
  // has optimized implementations for dimensionality of 1-3, and unoptimized
  // implementation for 4 and greater.
  int testResult = EXIT_SUCCESS;
  int testResult1 = EXIT_SUCCESS;
  int testResult2 = EXIT_SUCCESS;
  int testResult3 = EXIT_SUCCESS;
  int testResult4 = EXIT_SUCCESS;

  std::cout << "***** Testing dimensionality of 1 *****" << std::endl;
  if( RunTest<1>() == EXIT_FAILURE )
    {
    testResult1 = EXIT_FAILURE;
    std::cout << "Failed for dimensionality 1." << std::endl;
    }
  std::cout << "***** Testing dimensionality of 2 *****" << std::endl;
  if( RunTest<2>() == EXIT_FAILURE )
    {
    testResult2 = EXIT_FAILURE;
    std::cout << "Failed for dimensionality 2." << std::endl;
    }
  std::cout << "***** Testing dimensionality of 3 *****" << std::endl;
  if( RunTest<3>() == EXIT_FAILURE )
    {
    testResult3 = EXIT_FAILURE;
    std::cout << "Failed for dimensionality 3." << std::endl;
    }
  std::cout << "***** Testing dimensionality of 4 *****" << std::endl;
  if( RunTest<4>() == EXIT_FAILURE )
    {
    testResult4 = EXIT_FAILURE;
    std::cout << "Failed for dimensionality 4." << std::endl;
    }

  if( testResult1 == EXIT_SUCCESS && testResult2 == EXIT_SUCCESS &&
    testResult3 == EXIT_SUCCESS && testResult4 == EXIT_SUCCESS )
    {
    std::cout << "TEST FINISHED SUCCESSFULLY!" << std::endl;
    }
  else
    {
    std::cout << "TEST FAILED!" << std::endl;
    testResult = EXIT_FAILURE;
    }

  return testResult;
 }