File: itkInterpolateTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (389 lines) | stat: -rw-r--r-- 10,102 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkMath.h"
#include "itkImage.h"
#include "itkLinearInterpolateImageFunction.h"
#include "itkNearestNeighborInterpolateImageFunction.h"

typedef itk::Size<3>                              SizeType;
typedef itk::Image<unsigned short, 3>             ImageType;
typedef double                                    CoordRepType;
typedef itk::LinearInterpolateImageFunction<ImageType,CoordRepType>
                                                  InterpolatorType;
typedef InterpolatorType::IndexType               IndexType;
typedef InterpolatorType::PointType               PointType;
typedef InterpolatorType::ContinuousIndexType     ContinuousIndexType;

typedef itk::NearestNeighborInterpolateImageFunction<ImageType,CoordRepType>
  NNInterpolatorType;
namespace
{

/* Define the image size and physical coordinates */
SizeType size = {{20, 40, 80}};
double origin [3] = { 0.5L,   0.5L,   0.5L};
double spacing[3] = { 0.1L,   0.05L , 0.025L};

}

/**
 * Test a geometric point. Returns true if test has passed,
 * returns false otherwise
 */
template <typename TInterpolator>
bool TestGeometricPoint(
const TInterpolator * interp,
const PointType& point,
bool isInside,
double trueValue )
{

  std::cout << " Point: " << point;

  bool bvalue = interp->IsInsideBuffer( point );
  std::cout << " Inside: " << bvalue;

  if( bvalue != isInside )
    {
    std::cout << "*** Error: inside should be " << isInside << std::endl;
    return false;
    }

  if( isInside )
    {
    double value = interp->Evaluate( point );
    std::cout << " Value: " << value;

    if( itk::Math::abs( value - trueValue ) > 1e-9 )
      {
      std::cout << "*** Error: value should be " << trueValue << std::endl;
      return false;
      }
    }

  std::cout << std::endl;
  return true;

}

/**
 * Test a continuous index. Returns true if test has passed,
 * returns false otherwise
 */
template<typename TInterpolator>
bool TestContinuousIndex(
const TInterpolator * interp,
const ContinuousIndexType& index,
bool isInside,
double trueValue )
{

  std::cout << " Index: " << index;

  bool bvalue = interp->IsInsideBuffer( index );
  std::cout << " Inside: " << bvalue;

  if( bvalue != isInside )
    {
    std::cout << "*** Error: inside should be " << isInside << std::endl;
    return false;
    }

  if( isInside )
    {
    double value = interp->EvaluateAtContinuousIndex( index );
    std::cout << " Value: " << value;

    if( itk::Math::abs( value - trueValue ) > 1e-9 )
      {
      std::cout << "*** Error: value should be " << trueValue << std::endl;
      return false;
      }
    }

  std::cout << std::endl;
  return true;

}


int itkInterpolateTest(int, char *[] )
{
  int flag = 0;           /* Did this test program work? */

  std::cout << "Testing image interpolation methods:\n";

  /* Allocate a simple test image */
  ImageType::Pointer image = ImageType::New();
  ImageType::RegionType region;
  region.SetSize(size);
  image->SetLargestPossibleRegion(region);
  image->SetBufferedRegion(region);
  image->Allocate();

  /* Set origin and spacing of physical coordinates */
  image->SetOrigin(origin);
  image->SetSpacing(spacing);

  /* Initialize the image contents */
  IndexType index;
  for (int slice = 0; slice < 80; slice++)
    {
    index[2] = slice;
    for (int row = 0; row < 40; row++)
      {
      index[1] = row;
      for (int col = 0; col < 20; col++)
        {
        index[0] = col;
        image->SetPixel(index, slice+row+col);
        }
      }
    }

  /* Create and initialize the interpolator */
  InterpolatorType::Pointer interp = InterpolatorType::New();
  interp->SetInputImage(image);
  interp->Print( std::cout );

  /* Test evaluation at continuous indices and corresponding
     gemetric points */
  std::cout << "Evaluate at: " << std::endl;
  ContinuousIndexType cindex;
  IndexType mindex;
  PointType point;
  bool passed;

  // an integer position inside the image
  itk::SpacePrecisionType darray1[3] = { 10, 20, 40};
  cindex = ContinuousIndexType(darray1);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 70 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 70 );

  if( !passed )
    {
    flag = 1;
    }

  mindex.CopyWithRound( cindex );
  double expectedValue = mindex[0] + mindex[1] + mindex[2];
  if ( itk::Math::NotAlmostEquals(interp->EvaluateAtIndex( mindex ), expectedValue) )
    {
    std::cout << "Index: " << index;
    std::cout << "Value: " << interp->EvaluateAtIndex(index) << std::endl;
    std::cout << "Error: true value should be 70" << std::endl;
    flag = 1;
    }

  // position at the image border
  itk::SpacePrecisionType darray2[3] = {0, 20, 40};
  cindex = ContinuousIndexType(darray2);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 60 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 60 );

  if( !passed )
    {
    flag = 1;
    }

  // position near image border
  itk::SpacePrecisionType epsilon = 1.0e-10;
  itk::SpacePrecisionType darray3[3] = {19 - epsilon, 20, 40};
  cindex = ContinuousIndexType(darray3);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 79 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 79 );

  if( !passed )
    {
    flag = 1;
    }

  // position outside the image
  itk::SpacePrecisionType darray4[3] = {20, 20, 40};
  cindex = ContinuousIndexType(darray4);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, false, 0 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, false, 0 );

  if( !passed )
    {
    flag = 1;
    }

  // at non-integer position, before half value
  itk::SpacePrecisionType darray5[3] = {5.25, 12.4, 42.0};
  cindex = ContinuousIndexType(darray5);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 59.65 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 59.65 );

  if( !passed )
    {
    flag = 1;
    }

  /* Create and initialize the nearest neigh. interpolator */
  NNInterpolatorType::Pointer nninterp = NNInterpolatorType::New();
  nninterp->SetInputImage(image);
  nninterp->Print( std::cout );

  mindex.CopyWithRound( cindex );
  expectedValue = mindex[0] + mindex[1] + mindex[2];

  passed = TestContinuousIndex<NNInterpolatorType>( nninterp, cindex, true, expectedValue );

  if( !passed )
    {
    flag = 1;
    }

  // at non-integer position, after half value
  itk::SpacePrecisionType darray6[3] = {5.25, 12.6, 42.0};
  cindex = ContinuousIndexType(darray6);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 59.85 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 59.85 );

  if( !passed )
    {
    flag = 1;
    }

  mindex.CopyWithRound( cindex );
  expectedValue = mindex[0] + mindex[1] + mindex[2];

  passed = TestContinuousIndex<NNInterpolatorType>( nninterp, cindex, true, expectedValue );

  if( !passed )
    {
    flag = 1;
    }

  // at non-integer position, at half value with an even base number
  itk::SpacePrecisionType darray7[3] = {5.25, 12.5, 42.0};
  cindex = ContinuousIndexType(darray7);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 59.75 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 59.75 );

  if( !passed )
    {
    flag = 1;
    }

  mindex.CopyWithRound( cindex );
  expectedValue = mindex[0] + mindex[1] + mindex[2];

  passed = TestContinuousIndex<NNInterpolatorType>( nninterp, cindex, true, expectedValue );

  if( !passed )
    {
    flag = 1;
    }

  // at non-integer position, at half value with an odd base number
  itk::SpacePrecisionType darray8[3] = {5.25, 11.5, 42.0};
  cindex = ContinuousIndexType(darray8);
  passed = TestContinuousIndex<InterpolatorType>( interp, cindex, true, 58.75 );

  if( !passed )
    {
    flag = 1;
    }

  image->TransformContinuousIndexToPhysicalPoint( cindex, point );
  passed = TestGeometricPoint<InterpolatorType>( interp, point, true, 58.75 );

  if( !passed )
    {
    flag = 1;
    }


  mindex.CopyWithRound( cindex );
  expectedValue = mindex[0] + mindex[1] + mindex[2];

  passed = TestContinuousIndex<NNInterpolatorType>( nninterp, cindex, true, expectedValue );

  if( !passed )
    {
    flag = 1;
    }


  /* Return results of test */
  if (flag != 0)
    {
    std::cout << "*** Some test failed" << std::endl;
    return flag;
    }
  else
    {
    std::cout << "All tests successfully passed" << std::endl;
    }

  return EXIT_SUCCESS;
}