1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMesh.h"
#include "itkTetrahedronCell.h"
#include "itkHexahedronCell.h"
#include "itkQuadraticTriangleCell.h"
#include "itkFileOutputWindow.h"
#include <iostream>
namespace itkMeshTestTypes {
// this namespace helps to isolate the types defined blow
// when all the code is included in the test driver.
/**
* Some typedefs to make things easier.
*/
/**
* Define a mesh type that stores a PixelType of "int". Use the defaults
* for the other template parameters.
*/
typedef itk::Mesh<int> MeshType;
typedef MeshType::CellTraits CellTraits;
/**
* Define a few cell types which uses a PixelType of "int". Again,
* use the defaults for the other parameters. Note that a cell's template
* parameters must match those of the mesh into which it is inserted.
*/
typedef itk::CellInterface< int, CellTraits > CellInterfaceType;
typedef itk::LineCell<CellInterfaceType> LineCellType;
typedef itk::TetrahedronCell<CellInterfaceType> TetraCellType;
typedef itk::HexahedronCell<CellInterfaceType> HexaCellType;
typedef itk::QuadraticEdgeCell<CellInterfaceType> QuadraticEdgeCellType;
typedef itk::QuadraticTriangleCell<CellInterfaceType> QuadraticTriangleCellType;
/**
* Typedef the generic cell type for the mesh. It is an abstract class,
* so we can only use information from it, like get its pointer type.
*/
typedef MeshType::CellType CellType;
typedef CellType::CellAutoPointer CellAutoPointer;
/**
* The type of point stored in the mesh. Because mesh was instantiated
* with defaults (itkDefaultStaticMeshTraits), the point dimension is 3 and
* the coordinate representation is float.
*/
typedef MeshType::PointType PointType;
/**
* The mesh that is created consists of a single hexahedron and a single
* tetrahedron. (The tetra is inside of the hex.)
*/
// create a class to store counts of cells found in the visit pass
class CountClass
{
public:
CountClass()
{
m_Tetra =0;
m_QuadraticEdgeCell =0;
m_QuadraticTriangleCellType =0;
}
int m_Tetra;
int m_QuadraticEdgeCell;
int m_QuadraticTriangleCellType;
};
// Create a class that can be used to visit cells of
// different types via overloading the Visit method
class VisitCells
{
public:
void SetCountClass(CountClass* c)
{
m_CountClass = c;
}
void Visit(unsigned long , TetraCellType*)
{
m_CountClass->m_Tetra++;
}
void Visit(unsigned long , QuadraticEdgeCellType*)
{
m_CountClass->m_QuadraticEdgeCell++;
}
void Visit(unsigned long , QuadraticTriangleCellType*)
{
m_CountClass->m_QuadraticTriangleCellType++;
}
virtual ~VisitCells() {}
CountClass* m_CountClass;
VisitCells()
{
m_CountClass = ITK_NULLPTR;
}
};
typedef itk::CellInterfaceVisitorImplementation<
int, MeshType::CellTraits,
TetraCellType,
VisitCells> TetraCellVisitor;
typedef itk::CellInterfaceVisitorImplementation<
int, MeshType::CellTraits,
QuadraticEdgeCellType,
VisitCells> QuadraticEdgeCellVisitor;
typedef itk::CellInterfaceVisitorImplementation<
int, MeshType::CellTraits,
QuadraticTriangleCellType,
VisitCells> QuadraticTriangleCellVisitor;
}
int itkMeshTest(int, char* [] )
{
using namespace itkMeshTestTypes; // open the namespace here.
// this is safe because only happens localy.
itk::FileOutputWindow::Pointer fow = itk::FileOutputWindow::New();
fow->SetInstance(fow);
/**
* Define the 3d geometric positions for 8 points in a cube.
*/
MeshType::CoordRepType testPointCoords[8][3]
= { {0,0,0}, {9,0,0}, {9,0,9}, {0,0,9},
{0,9,0}, {9,9,0}, {9,9,9}, {0,9,9} };
/**
* List the points that the tetrahedron will use from the mesh.
*/
MeshType::PointIdentifier tetraPoints[4] = {0,1,2,4};
/**
* List the points that the hexahedron will use from the mesh.
*/
MeshType::PointIdentifier hexaPoints[8] = {0,1,2,3,4,5,6,7};
/**
* Create the mesh through its object factory.
*/
MeshType::Pointer mesh = MeshType::New();
mesh->DebugOn();
/**
* Add our test points to the mesh.
* mesh->SetPoint(pointId, point)
* Note that the constructor for Point is public, and takes an array
* of coordinates for the point.
*/
for(int i=0; i < 8; ++i)
{
mesh->SetPoint(i, PointType(testPointCoords[i]));
}
/**
* Specify the method used for allocating cells
*/
mesh->SetCellsAllocationMethod( MeshType::CellsAllocatedDynamicallyCellByCell );
/**
* Create the test cell. Note that testCell is a generic auto
* pointer to a cell; in this example it ends up pointing to
* different types of cells.
*/
CellAutoPointer testCell;
testCell.TakeOwnership( new TetraCellType ); // polymorphism
/**
* Assign the points to the tetrahedron through their identifiers.
*/
testCell->SetPointIds(tetraPoints);
/**
* Add the test cell to the mesh.
* mesh->SetCell(cellId, cell)
*/
mesh->SetCell(0, testCell ); // Transfer ownership to the mesh
std::cout << "TetrahedronCell pointer = " << (void const *)testCell.GetPointer() << std::endl;
std::cout << "TetrahedronCell Owner = " << testCell.IsOwner() << std::endl;
/**
* Create another test cell.
*/
testCell.TakeOwnership( new HexaCellType ); // polymorphism
testCell->SetPointIds(hexaPoints);
mesh->SetCell(1, testCell ); // Internally transfers ownership to the mesh
CellAutoPointer hexaCell;
if( mesh->GetCell(1, hexaCell) )
{
std::cout << "Hexahedron cell recovered" << std::endl;
std::cout << "GetNameOfClass() = " << hexaCell->GetNameOfClass() << std::endl;
std::cout << "GetNumberOfPoints() = " << hexaCell->GetNumberOfPoints() << std::endl;
}
else
{
std::cout << "Failure: hexahedron cell was not recovered" << std::endl;
return EXIT_FAILURE;
}
CellAutoPointer cellPointer0;
/**
* Try getting one of the hexahedron's faces.
*/
const bool faceExists = mesh->GetCellBoundaryFeature(
2, // Topological dimension of boundary.
1, // CellIdentifier.
0, // CellFeatureIdentifier
cellPointer0 ); // CellPointer to return the result
std::cout << typeid( cellPointer0 ).name() << std::endl;
std::cout << typeid( cellPointer0.GetPointer() ).name() << std::endl;
std::cout << "GetCellBoundaryFeature() return AutoPointer owner = " << cellPointer0.IsOwner() << std::endl;
HexaCellType::FaceType * quad;
try
{
quad = dynamic_cast<HexaCellType::FaceType *>( cellPointer0.GetPointer() );
std::cout << "Quad face recovered " << std::endl;
std::cout << quad->GetNameOfClass() << std::endl;
}
catch(...)
{
std::cout << "CellPointer cannot be down-cast to a QuadCellType" << std::endl;
quad = ITK_NULLPTR;
}
if( quad )
{
std::cout << "CellPointer was safely down-casted to a QuadCellType" << std::endl;
}
if( faceExists )
{
std::cout << cellPointer0->GetNumberOfPoints() << std::endl;
std::cout << cellPointer0->GetNameOfClass() << std::endl;
}
else
{
std::cout << "Hexahedron face couldn't be extracted " << std::endl;
}
/**
* Allocate an explicit boundary line.
*/
CellAutoPointer boundLine;
boundLine.TakeOwnership( new LineCellType );
/**
* We don't want the hexahedron to consider the tetrahedron a neighbor
* across its first edge, so don't add the tetrahedron as a using cell.
*/
boundLine->AddUsingCell(1);
boundLine->SetPointId(0,0);
boundLine->SetPointId(1,1);
mesh->SetCell( 2, // New ID for new cell
boundLine); // New cell being added
mesh->SetBoundaryAssignment(1, // Topological dimension.
1, // CellIdentifier
0, // CellFeatureIdentifier
2); // Cell ID of boundary
std::cout << "boundLine.IsOwner() = " << boundLine.IsOwner() << std::endl;
std::cout << "boundLine.GetPointer() = " << boundLine.GetPointer() << std::endl;
/**
* Try getting the hexahedron's neighbor through its first edge.
* This should be the test tetrahedron, except that we have done an
* explicit assignment which removes this.
*/
std::set<MeshType::CellIdentifier> neighborSet;
std::set<MeshType::CellIdentifier>::iterator cell;
mesh->GetCellBoundaryFeatureNeighbors(
1, // Topological dimension of feature.
1, // CellIdentifier
0, // CellFeatureIdentifier
&neighborSet); // Where to put result.
std::cout << "Neighbors (hex edge 0):" << std::endl;
for(cell = neighborSet.begin(); cell != neighborSet.end(); ++cell)
{
std::cout << "Id " << *cell << ": ";
CellAutoPointer cellPointer;
if( mesh->GetCell( *cell, cellPointer ) )
{
std::cout << cellPointer->GetNameOfClass();
}
std::cout << std::endl;
}
/**
* Try querying the for the number of neighbors the hexahedron has
* through its second edge, without getting the actual set of
* boundaries. (The result should be 1. Note that the quads and
* triangles that bound the 3D cells haven't been added, so they
* don't show up as additional neighbors.)
*/
int numberOfNeighbors = mesh->GetCellBoundaryFeatureNeighbors(
1, // Topological dimension of feature.
1, // CellIdentifier
1, // CellFeatureIdentifier
ITK_NULLPTR); // We don't want the neighbors themselves (yet)
std::cout << "Number of neighbors (hex edge 1): "
<< numberOfNeighbors << ". " << std::endl;
/**
* Try getting the hexahedron's neighbor through its second edge.
* This should be the test tetrahedron. (Because the boundary is
* not defined explicitly, we use implicit relationships to determine
* neighbors. In this case, the tetrahedron and hexahedron share
* the two points defining the edge and are therefore considered
* neighbors.)
*/
mesh->GetCellBoundaryFeatureNeighbors(
1, // Topological dimension of feature.
1, // CellIdentifier
1, // CellFeatureIdentifier
&neighborSet); // Where to put result.
std::cout << "Neighbors (hex edge 1):" << std::endl;
for(cell = neighborSet.begin(); cell != neighborSet.end(); ++cell)
{
std::cout << "Id " << *cell << ": ";
CellAutoPointer cellPointer;
if( mesh->GetCell(*cell, cellPointer) )
{
std::cout << cellPointer->GetNameOfClass();
}
std::cout << std::endl;
}
/**
* Try getting the tetrahedrons's neighbor through its fourth edge.
* This should be the test hexahedron. The boundaries are implicit
* as in the previous example.
*/
mesh->GetCellBoundaryFeatureNeighbors(
1, // Topological dimension of feature.
0, // CellIdentifier
3, // CellFeatureIdentifier
&neighborSet); // Where to put result.
std::cout << "Neighbors (tet edge 3):" << std::endl;
for(cell = neighborSet.begin(); cell != neighborSet.end(); ++cell)
{
std::cout << "Id " << *cell << ": ";
CellAutoPointer cellPointer;
if( mesh->GetCell(*cell, cellPointer) )
{
std::cout << cellPointer->GetNameOfClass();
}
std::cout << std::endl;
}
/**
* Create a higher order test cell.
*/
{ // Create a local scope
// In this block, we overwrite a cell at a particular id.
// To avoid a memory leak, we must first grab ownership of the
// current cell at that id so that the memory for the original
// cell will be deleted when we leave this scope
CellAutoPointer cellToDelete;
mesh->GetCell(2, cellToDelete);
cellToDelete.TakeOwnership();
testCell.TakeOwnership( new QuadraticEdgeCellType ); // polymorphism
MeshType::PointIdentifier quadraticEdgePoints[3] = {0,1,2};
testCell->SetPointIds(quadraticEdgePoints);
mesh->SetCell(2, testCell ); // Internally transfers ownership to the mesh
CellAutoPointer quadraticdEdgeCell;
if( mesh->GetCell(2, quadraticdEdgeCell) )
{
std::cout << "Quadratic Edge cell recovered" << std::endl;
std::cout << "GetNameOfClass() = " << quadraticdEdgeCell->GetNameOfClass() << std::endl;
std::cout << "GetNumberOfPoints() = " << quadraticdEdgeCell->GetNumberOfPoints() << std::endl;
}
else
{
std::cout << "Failure: QuadraticEdge cell was not recovered" << std::endl;
return EXIT_FAILURE;
}
CellAutoPointer vertexPointer;
/**
* Try getting one of the QuadraticEdge's vertices.
*/
const bool vertexExists = mesh->GetCellBoundaryFeature(
0, // Topological dimension of boundary.
2, // CellIdentifier.
0, // CellFeatureIdentifier
vertexPointer ); // CellPointer to return the result
std::cout << typeid( vertexPointer ).name() << std::endl;
std::cout << typeid( vertexPointer.GetPointer() ).name() << std::endl;
std::cout << "GetCellBoundaryFeature() return AutoPointer owner = " << vertexPointer.IsOwner() << std::endl;
QuadraticEdgeCellType::VertexType * vertex;
try
{
vertex = dynamic_cast<QuadraticEdgeCellType::VertexType *>( vertexPointer.GetPointer() );
std::cout << "Vertex from the QuadraticEdge recovered " << std::endl;
std::cout << vertex->GetNameOfClass() << std::endl;
}
catch(...)
{
std::cout << "CellPointer cannot be down-cast to a VertexCellType" << std::endl;
vertex = ITK_NULLPTR;
}
if( vertex )
{
std::cout << "CellPointer was safely down-casted to a VertexCellType" << std::endl;
}
if( vertexExists )
{
std::cout << "Vertex number of points = " << vertexPointer->GetNumberOfPoints() << std::endl;
std::cout << "Vertex name of class = " << vertexPointer->GetNameOfClass() << std::endl;
}
else
{
std::cout << "Vertex of the QuadraticEdge couldn't be extracted " << std::endl;
}
} // end of local scope for this part of the test.
/**
* Create a higher order triangular test cell.
*/
{ // Create a local scope
// In this block, we overwrite a cell at a particular id.
// To avoid a memory leak, we must first grab ownership of the
// current cell at that id so that the memory for the original
// cell will be deleted when we leave this scope
CellAutoPointer cellToDelete;
mesh->GetCell(2, cellToDelete);
cellToDelete.TakeOwnership();
// Now we can construct a new cell and overwrite the id
testCell.TakeOwnership(new QuadraticTriangleCellType); // polymorphism;
MeshType::PointIdentifier quadraticTrianglePoints[3] = {0,1,2};
testCell->SetPointIds(quadraticTrianglePoints);
mesh->SetCell(2, testCell ); // Internally transfers ownership to the mesh
std::cout << "QuadraticTriangleCell pointer = " << (void*)testCell.GetPointer() << std::endl;
std::cout << "QuadraticTriangleCell Owner = " << testCell.IsOwner() << std::endl;
CellAutoPointer quadraticdTriangleCell;
if( mesh->GetCell(2, quadraticdTriangleCell) )
{
std::cout << "Quadratic Triangle cell recovered" << std::endl;
std::cout << "GetNameOfClass() = " << quadraticdTriangleCell->GetNameOfClass() << std::endl;
std::cout << "GetNumberOfPoints() = " << quadraticdTriangleCell->GetNumberOfPoints() << std::endl;
}
else
{
std::cout << "Failure: QuadraticTriangle cell was not recovered" << std::endl;
return EXIT_FAILURE;
}
CellAutoPointer vertexPointer;
/**
* Try getting one of the QuadraticTriangle's vertices.
*/
const bool vertexExists = mesh->GetCellBoundaryFeature(
0, // Topological dimension of boundary.
2, // CellIdentifier.
0, // CellFeatureIdentifier
vertexPointer ); // CellPointer to return the result
std::cout << typeid( vertexPointer ).name() << std::endl;
std::cout << typeid( vertexPointer.GetPointer() ).name() << std::endl;
std::cout << "GetCellBoundaryFeature() return AutoPointer owner = " << vertexPointer.IsOwner() << std::endl;
QuadraticTriangleCellType::VertexType * vertex;
try
{
vertex = dynamic_cast<QuadraticTriangleCellType::VertexType *>( vertexPointer.GetPointer() );
std::cout << "Vertex from the QuadraticTriangle recovered " << std::endl;
std::cout << vertex->GetNameOfClass() << std::endl;
}
catch(...)
{
std::cout << "CellPointer cannot be down-cast to a VertexCellType" << std::endl;
vertex = ITK_NULLPTR;
}
if( vertex )
{
std::cout << "CellPointer was safely down-casted to a VertexCellType" << std::endl;
}
if( vertexExists )
{
std::cout << "Vertex number of points = " << vertexPointer->GetNumberOfPoints() << std::endl;
std::cout << "Vertex name of class = " << vertexPointer->GetNameOfClass() << std::endl;
}
else
{
std::cout << "Vertex of the QuadraticTriangle couldn't be extracted " << std::endl;
}
/**
* Try getting one of the QuadraticTriangle's edges.
*/
CellAutoPointer edgePointer;
const bool edgeExists = mesh->GetCellBoundaryFeature(
1, // Topological dimension of boundary.
2, // CellIdentifier.
0, // CellFeatureIdentifier
edgePointer ); // CellPointer to return the result
std::cout << typeid( edgePointer ).name() << std::endl;
std::cout << typeid( edgePointer.GetPointer() ).name() << std::endl;
std::cout << "GetCellBoundaryFeature() return AutoPointer owner = " << edgePointer.IsOwner() << std::endl;
QuadraticTriangleCellType::EdgeType * edge;
try
{
edge = dynamic_cast<QuadraticTriangleCellType::EdgeType *>( edgePointer.GetPointer() );
std::cout << "Vertex from the QuadraticTriangle recovered " << std::endl;
std::cout << edge->GetNameOfClass() << std::endl;
}
catch(...)
{
std::cout << "CellPointer cannot be down-cast to a VertexCellType" << std::endl;
edge = ITK_NULLPTR;
}
if( edge )
{
std::cout << "CellPointer was safely down-casted to a VertexCellType" << std::endl;
}
if( edgeExists )
{
std::cout << "Edge number of points = " << edgePointer->GetNumberOfPoints() << std::endl;
std::cout << "Edge name of class = " << edgePointer->GetNameOfClass() << std::endl;
// Evaluate The Shape functions for a particular parametric point
CellType::ParametricCoordArrayType parametricCoordinates(1);
CellType::ShapeFunctionsArrayType weights( edgePointer->GetNumberOfPoints() );
parametricCoordinates[0] = 0.25;
edgePointer->EvaluateShapeFunctions( parametricCoordinates, weights );
std::cout << "Shape Function weights = " << weights << std::endl;
}
else
{
std::cerr << "Edge of the QuadraticTriangle couldn't be extracted " << std::endl;
}
} // end of local scope for this part of the test.
/**
* Compute the bounding box of the mesh
*/
typedef itk::BoundingBox<MeshType::PointIdentifier,MeshType::PointDimension,
MeshType::CoordRepType,MeshType::PointsContainer> BoundingBox;
BoundingBox::Pointer bbox(BoundingBox::New());
bbox->SetPoints(mesh->GetPoints());
bbox->ComputeBoundingBox();
/**
* Set up some visitors
*/
MeshType::CellType::MultiVisitor::Pointer mv =
MeshType::CellType::MultiVisitor::New();
/**
* Create a class to hold the counts of each cell type
*/
CountClass counts;
/**
* Create a visitor for each cell type and set the counts class for the visitor
*/
TetraCellVisitor::Pointer cv = TetraCellVisitor::New();
cv->SetCountClass(&counts);
QuadraticEdgeCellVisitor::Pointer ev = QuadraticEdgeCellVisitor::New();
ev->SetCountClass(&counts);
QuadraticTriangleCellVisitor::Pointer tv = QuadraticTriangleCellVisitor::New();
tv->SetCountClass(&counts);
mv->AddVisitor(cv);
mv->AddVisitor(ev);
mv->AddVisitor(tv);
// Now ask the mesh to accept the multivisitor which
// will Call Visit for each cell in the mesh that matches the
// cell types of the visitors added to the MultiVisitor
mesh->Accept(mv);
// print the counts found
std::cout << "Number of TetraCellType " << counts.m_Tetra << "\n";
std::cout << "Number of QuadraticEdgeCellType " << counts.m_QuadraticEdgeCell << "\n";
std::cout << "Number of QuadraticTriangleCellType " << counts.m_QuadraticTriangleCellType << "\n";
std::cout << bbox << std::endl;
std::cout << mesh << std::endl;
// Exercising the Graft method
MeshType::Pointer newMesh = MeshType::New();
newMesh->Graft( mesh );
if( newMesh->GetNumberOfPoints() != mesh->GetNumberOfPoints() )
{
std::cerr << "Graft failed !, different number of points" << std::endl;
return EXIT_FAILURE;
}
if( newMesh->GetNumberOfCells() != mesh->GetNumberOfCells() )
{
std::cerr << "Graft failed !, different number of cells" << std::endl;
return EXIT_FAILURE;
}
std::cout << newMesh << std::endl;
return EXIT_SUCCESS;
}
|