1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkMesh.h"
#include "itkQuadrilateralCell.h"
#include <iostream>
int itkQuadrilateralCellTest(int, char* [] )
{
/**
* Define a mesh type that stores a PixelType of "int". Use the defaults for
* the other template parameters.
*/
typedef itk::Mesh<int> MeshType;
typedef MeshType::CellTraits CellTraits;
/**
* Define a few cell types which uses a PixelType of "int". Again,
* use the defaults for the other parameters. Note that a cell's template
* parameters must match those of the mesh into which it is inserted.
*/
typedef itk::CellInterface< int, CellTraits > CellInterfaceType;
typedef itk::QuadrilateralCell<CellInterfaceType> QuadrilateralCellType;
class QuadrilateralHelper : public QuadrilateralCellType
{
typedef QuadrilateralCellType Superclass;
typedef Superclass::CoordRepType CoordRepType;
typedef Superclass::PointsContainer PointsContainer;
typedef Superclass::InterpolationWeightType InterpolationWeightType;
public:
bool EvaluatePosition(CoordRepType* inputPoint,
PointsContainer* points,
CoordRepType* closestPoint,
CoordRepType pcoord [],
double * distance,
InterpolationWeightType* weights) ITK_OVERRIDE
{
return this->Superclass::EvaluatePosition( inputPoint,
points, closestPoint, pcoord, distance, weights );
}
};
/**
* Typedef the generic cell type for the mesh. It is an abstract class,
* so we can only use information from it, like get its pointer type.
*/
typedef MeshType::CellType CellType;
typedef CellType::CellAutoPointer CellAutoPointer;
/**
* The type of point stored in the mesh. Because mesh was instantiated
* with defaults (itkDefaultStaticMeshTraits), the point dimension is 3 and
* the coordinate representation is float.
*/
typedef MeshType::PointType PointType;
/**
* Create the mesh through its object factory.
*/
MeshType::Pointer mesh = MeshType::New();
mesh->DebugOn();
const unsigned int numberOfPoints = 6;
/**
* Define the 3D geometric positions for 6 points in two neighbouring squares.
*/
const unsigned int Dimension = 3;
// Test points are on a plane at an angle (3^2 + 4^2 = 5^2) with xy plane
MeshType::CoordRepType testPointCoords[numberOfPoints][Dimension]
= { {0,0,0}, {10,0,0}, {0,8,6}, {10,8,6}, {0,16,12}, {10,16,12} };
/**
* Add our test points to the mesh.
* mesh->SetPoint(pointId, point)
* Note that the constructor for Point is public, and takes an array
* of coordinates for the point.
*/
for(unsigned int i=0; i < numberOfPoints; ++i)
{
mesh->SetPoint(i, PointType( testPointCoords[i] ) );
}
/**
* Specify the method used for allocating cells
*/
mesh->SetCellsAllocationMethod( MeshType::CellsAllocatedDynamicallyCellByCell );
/**
* Create the test cell. Note that testCell is a generic auto
* pointer to a cell; in this example it ends up pointing to
* different types of cells.
*/
CellAutoPointer testCell1, testCell2;
testCell1.TakeOwnership( new QuadrilateralHelper ); // polymorphism
testCell2.TakeOwnership( new QuadrilateralHelper ); // polymorphism
// List the points that the polygon will use from the mesh.
MeshType::PointIdentifier polygon1Points1[4] = {1,3,2,0};
MeshType::PointIdentifier polygon2Points1[4] = {3,5,4,2};
// Assign the points to the tetrahedron through their identifiers.
testCell1->SetPointIds(polygon1Points1);
testCell2->SetPointIds(polygon2Points1);
/**
* Add the test cell to the mesh.
* mesh->SetCell(cellId, cell)
*/
mesh->SetCell(0, testCell1 ); // Transfer ownership to the mesh
mesh->SetCell(1, testCell2 ); // Transfer ownership to the mesh
std::cout << "QuadrilateralCell pointer = " << (void const *)testCell1.GetPointer() << std::endl;
std::cout << "QuadrilateralCell Owner = " << testCell1.IsOwner() << std::endl;
{
std::cout << "Test MakeCopy" << std::endl;
CellAutoPointer anotherCell;
testCell1->MakeCopy( anotherCell );
if( anotherCell->GetNumberOfPoints() != testCell1->GetNumberOfPoints() )
{
std::cerr << "Make Copy failed !" << std::endl;
return EXIT_FAILURE;
}
}
//
// Test the EvaluatePosition() method of the QuadrilateralCell
//
QuadrilateralCellType::CoordRepType inputPoint[3];
QuadrilateralCellType::PointsContainer * points = mesh->GetPoints();
QuadrilateralCellType::CoordRepType closestPoint[3];
QuadrilateralCellType::CoordRepType pcoords[2]; // Quadrilateral has 2 parametric coordinates
double distance;
QuadrilateralCellType::InterpolationWeightType weights[4];
const double toleance = 1e-5;
bool isInside;
// Test 1: point on quad1
inputPoint[0] = 4.0;
inputPoint[1] = 4.0;
inputPoint[2] = 3.0; // point on plane
std::cout << "Calling EvaluatePosition for Quad1 with ";
std::cout << inputPoint[0] << ", ";
std::cout << inputPoint[1] << ", ";
std::cout << inputPoint[2] << std::endl;
isInside = testCell1->EvaluatePosition(inputPoint,
points, closestPoint, pcoords , &distance, weights);
if( !isInside )
{
std::cerr << "Error: point should be reported as being inside" << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( pcoords[0] - 0.5 ) > toleance ) ||
( itk::Math::abs( pcoords[1] - 0.6 ) > toleance ) )
{
std::cerr << "Error: pcoords computed incorrectly" << std::endl;
std::cerr << "pcoords[0] = " << pcoords[0] << std::endl;
std::cerr << "pcoords[1] = " << pcoords[1] << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( weights[0] - 0.2 ) > toleance ) ||
( itk::Math::abs( weights[1] - 0.2 ) > toleance ) ||
( itk::Math::abs( weights[2] - 0.3 ) > toleance ) ||
( itk::Math::abs( weights[3] - 0.3 ) > toleance ) )
{
std::cerr << "Error: weights computed incorrectly" << std::endl;
std::cerr << "weights[0] = " << weights[0] << std::endl;
std::cerr << "weights[1] = " << weights[1] << std::endl;
std::cerr << "weights[2] = " << weights[2] << std::endl;
std::cerr << "weights[3] = " << weights[3] << std::endl;
return EXIT_FAILURE;
}
// Test 2: point outside quad2
std::cout << "Calling EvaluatePosition for Quad2 with ";
std::cout << inputPoint[0] << ", ";
std::cout << inputPoint[1] << ", ";
std::cout << inputPoint[2] << std::endl;
isInside = testCell2->EvaluatePosition(inputPoint,
points, closestPoint, pcoords, &distance, weights);
if( isInside )
{
std::cerr << "Error: point should be reported as being outside" << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( pcoords[0] + 0.5 ) > toleance ) ||
( itk::Math::abs( pcoords[1] - 0.6 ) > toleance ) )
{
std::cerr << "Error: pcoords computed incorrectly" << std::endl;
std::cerr << "pcoords[0] = " << pcoords[0] << std::endl;
std::cerr << "pcoords[1] = " << pcoords[1] << std::endl;
return EXIT_FAILURE;
}
// Test 3: point outside quad1
inputPoint[0] = 4.0;
inputPoint[1] = 12.0;
inputPoint[2] = 9.0; // point on plane
std::cout << "Calling EvaluatePosition for Quad1 with ";
std::cout << inputPoint[0] << ", ";
std::cout << inputPoint[1] << ", ";
std::cout << inputPoint[2] << std::endl;
isInside = testCell1->EvaluatePosition(inputPoint,
points, closestPoint, pcoords, &distance, weights);
if( isInside )
{
std::cerr << "Error: point should be reported as being outside" << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( pcoords[0] - 1.5 ) > toleance ) ||
( itk::Math::abs( pcoords[1] - 0.6 ) > toleance ) )
{
std::cerr << "Error: pcoords computed incorrectly" << std::endl;
std::cerr << "pcoords[0] = " << pcoords[0] << std::endl;
std::cerr << "pcoords[1] = " << pcoords[1] << std::endl;
return EXIT_FAILURE;
}
//
// NOTE: Outside points don't get their weights computed.
//
// Test 4: point in quad2
std::cout << "Calling EvaluatePosition for Quad2 with ";
std::cout << inputPoint[0] << ", ";
std::cout << inputPoint[1] << ", ";
std::cout << inputPoint[2] << std::endl;
isInside = testCell2->EvaluatePosition(inputPoint,
points, closestPoint, pcoords, &distance, weights);
if( !isInside )
{
std::cerr << "Error: point should be reported as being inside" << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( pcoords[0] - 0.5 ) > toleance ) ||
( itk::Math::abs( pcoords[1] - 0.6 ) > toleance ) )
{
std::cerr << "Error: pcoords computed incorrectly" << std::endl;
std::cerr << "pcoords[0] = " << pcoords[0] << std::endl;
std::cerr << "pcoords[1] = " << pcoords[1] << std::endl;
return EXIT_FAILURE;
}
if( ( itk::Math::abs( weights[0] - 0.2 ) > toleance ) ||
( itk::Math::abs( weights[1] - 0.2 ) > toleance ) ||
( itk::Math::abs( weights[2] - 0.3 ) > toleance ) ||
( itk::Math::abs( weights[3] - 0.3 ) > toleance ) )
{
std::cerr << "Error: weights computed incorrectly" << std::endl;
std::cerr << "weights[0] = " << weights[0] << std::endl;
std::cerr << "weights[1] = " << weights[1] << std::endl;
std::cerr << "weights[2] = " << weights[2] << std::endl;
std::cerr << "weights[3] = " << weights[3] << std::endl;
return EXIT_FAILURE;
}
// Test 5: point off of quad1
inputPoint[0] = 7.0;
inputPoint[1] = 5.0;
inputPoint[2] = 0.0; // point off the plane
std::cout << "Calling EvaluatePosition for Quad1 with ";
std::cout << inputPoint[0] << ", ";
std::cout << inputPoint[1] << ", ";
std::cout << inputPoint[2] << std::endl;
isInside = testCell1->EvaluatePosition(inputPoint,
points, closestPoint, pcoords, &distance, weights);
if( !isInside ) // The projection of the point is inside
{
std::cerr << "Error: point should be reported as being inside" << std::endl;
return EXIT_FAILURE;
}
// With planar assumption, this off-plane point should give: pcoords[0] = 0.625
// With proper projection on quad, it should give: pcoords[0] = 0.4
// FIXME when projection is implemented in itkQuadrilateralCell::EvaluatePosition
if( ( itk::Math::abs( pcoords[0] - 0.625 ) > toleance ) ||
( itk::Math::abs( pcoords[1] - 0.3 ) > toleance ) )
{
std::cerr << "Error: pcoords computed incorrectly" << std::endl;
std::cerr << "pcoords[0] = " << pcoords[0] << std::endl;
std::cerr << "pcoords[1] = " << pcoords[1] << std::endl;
return EXIT_FAILURE;
}
// TODO: test returned closestPoint and distance as well
return EXIT_SUCCESS;
}
|