1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkMath.h"
#include "itkAffineTransform.h"
#include "itkStdStreamStateSave.h"
typedef itk::Matrix<double, 2, 2> Matrix2Type;
typedef itk::Vector<double, 2> Vector2Type;
namespace
{
void PrintVector( const Vector2Type & v )
{
for( unsigned int i = 0; i < Vector2Type::Dimension; i++ )
{
std::cout << v[i] << ", ";
}
std::cout << std::endl;
}
bool testValue( const double v1, const double v2, int maxUlps=4 )
{
return itk::Math::FloatAlmostEqual( v1, v2, maxUlps );
}
template <typename TMatrix>
bool testMatrix( const TMatrix & m1, const TMatrix & m2, int maxUlps=4 )
{
bool pass = true;
for( unsigned int i = 0; i < TMatrix::RowDimensions; i++ )
{
for( unsigned int j = 0; j < TMatrix::ColumnDimensions; j++ )
{
if( !testValue( m1[i][j], m2[i][j], maxUlps ) )
{
pass = false;
}
}
}
return pass;
}
template <typename TVector>
bool testVector( const TVector & v1, const TVector & v2, int maxUlps=4 )
{
bool pass = true;
for( unsigned int i = 0; i < TVector::Dimension; i++ )
{
if( !testValue( v1[i], v2[i], maxUlps ) )
{
pass = false;
}
}
return pass;
}
template <typename TVector>
bool testVariableVector( const TVector & v1, const TVector & v2, int maxUlps=4 )
{
bool pass = true;
const unsigned int D1 = v1.Size();
const unsigned int D2 = v2.Size();
if( D1 != D2 )
{
return false;
}
for( unsigned int i = 0; i < D1; i++ )
{
if( !testValue( v1[i], v2[i], maxUlps ) )
{
pass = false;
}
}
return pass;
}
} // namespace
int itkAffineTransformTest(int, char *[])
{
/* NOTE: The truth values for tests were taken from the output
of the tests themselves. The assumption is that this code
has been well-tested by other means already. */
// Save the format stream variables for std::cout
// They will be restored when coutState goes out of scope
// scope.
itk::StdStreamStateSave coutState(std::cout);
/* Set outstream precision */
std::cout.precision(20);
std::cerr.precision(20);
int any = 0; // Any errors detected in testing?
Matrix2Type matrix2, matrix2Truth;
Matrix2Type inverse2;
Vector2Type vector2, vector2Truth;
/* Create a 2D identity transformation and show its parameters */
typedef itk::AffineTransform<double, 2> Affine2DType;
Affine2DType::Pointer id2 = Affine2DType::New();
matrix2 = id2->GetMatrix();
vector2 = id2->GetOffset();
std::cout << "Matrix from instantiating an identity transform:"
<< std::endl << matrix2;
std::cout << "Vector from instantiating an identity transform:"
<< std::endl;
PrintVector( vector2 );
/* Test identity transform against truth */
matrix2Truth[0][0] = 1;
matrix2Truth[0][1] = 0;
matrix2Truth[1][0] = 0;
matrix2Truth[1][1] = 1;
vector2Truth[0] = 0;
vector2Truth[1] = 0;
if( !testMatrix( matrix2, matrix2Truth ) ||
!testVector( vector2, vector2Truth ) )
{
std::cout << "Default identity transformation test failed." << std::endl;
return EXIT_FAILURE;
}
/* Create and show a simple 2D transform from given parameters */
matrix2[0][0] = 1;
matrix2[0][1] = 2;
matrix2[1][0] = 3;
matrix2[1][1] = 4;
vector2[0] = 5;
vector2[1] = 6;
Affine2DType::Pointer aff2 = Affine2DType::New();
aff2->SetMatrix( matrix2 );
aff2->SetOffset( vector2 );
for( unsigned int i = 0; i < 2; i++ )
{
for( unsigned int j = 0; j < 2; j++ )
{
matrix2[i][j] = 0.0;
}
vector2[i] = 0.0;
}
std::cout << "Instantiation of a given 2D transform:" << std::endl;
aff2->Print( std::cout );
/* Get and test inverse of whole transform */
Affine2DType::Pointer affInv2 = Affine2DType::New();
if( !aff2->GetInverse(affInv2) )
{
std::cout << "Test transform does not have an inverse when expected."
<< std::endl;
return EXIT_FAILURE;
}
std::cout << "Inverse transform for the given transform:"
<< std::endl << affInv2;
matrix2Truth[0][0] = -2;
matrix2Truth[0][1] = 1;
matrix2Truth[1][0] = 1.5;
matrix2Truth[1][1] = -0.5;
vector2Truth[0] = 4;
vector2Truth[1] = -4.5;
if( !testMatrix( affInv2->GetMatrix(), matrix2Truth, 7 ) ||
!testVector( affInv2->GetOffset(), vector2Truth, 6 ) )
{
std::cout << "Inverse transform test failed." << std::endl;
return EXIT_FAILURE;
}
/* Set parameters of a 2D transform */
matrix2[0][0] = 6;
matrix2[0][1] = 5;
matrix2[1][0] = 4;
matrix2[1][1] = 3;
vector2[0] = 2;
vector2[1] = 1;
aff2->SetMatrix(matrix2);
aff2->SetOffset(vector2);
for( unsigned int i = 0; i < 2; i++ )
{
for( unsigned int j = 0; j < 2; j++ )
{
matrix2[i][j] = 0.0;
}
vector2[i] = 0.0;
}
matrix2 = aff2->GetMatrix();
vector2 = aff2->GetOffset();
std::cout << "Setting the matrix in an existing transform:"
<< std::endl << matrix2;
std::cout << "Setting the offset in an existing transform:"
<< std::endl;
PrintVector( vector2 );
/* Try composition of two transformations */
aff2->Compose( aff2 );
std::cout << "Result of a composition:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 56;
matrix2Truth[0][1] = 45;
matrix2Truth[1][0] = 36;
matrix2Truth[1][1] = 29;
vector2Truth[0] = 19;
vector2Truth[1] = 12;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition of two transformations test failed." << std::endl;
return EXIT_FAILURE;
}
/* Compose with a translation */
Vector2Type trans;
trans[0] = 1;
trans[1] = 2;
aff2->Translate(trans);
std::cout << "Result of a translation:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 56;
matrix2Truth[0][1] = 45;
matrix2Truth[1][0] = 36;
matrix2Truth[1][1] = 29;
vector2Truth[0] = 20;
vector2Truth[1] = 14;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with a translation test failed." << std::endl;
return EXIT_FAILURE;
}
/* Compose with an isotropic scaling */
aff2->Scale(.3, 1);
std::cout << "Result of isotropic scaling:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 16.8;
matrix2Truth[0][1] = 13.5;
matrix2Truth[1][0] = 10.8;
matrix2Truth[1][1] = 8.7;
vector2Truth[0] = 20;
vector2Truth[1] = 14;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with isotropic scaling test failed." << std::endl;
return EXIT_FAILURE;
}
/* Compose with an anisotropic scaling */
Vector2Type scale;
scale[0] = .3;
scale[1] = .2;
aff2->Scale(scale);
std::cout << "Result of anisotropic scaling:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 5.04;
matrix2Truth[0][1] = 4.05;
matrix2Truth[1][0] = 2.16;
matrix2Truth[1][1] = 1.74;
vector2Truth[0] = 6;
vector2Truth[1] = 2.8;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with anisotropic scaling test failed."
<< std::endl;
return EXIT_FAILURE;
}
/* Compose with a general N-D rotation */
aff2->Rotate(0, 1, 0.57, 1);
std::cout << "Result of general rotation:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 2.0576711174453;
matrix2Truth[0][1] = 6.1294444750264;
matrix2Truth[1][0] = 0.87954634155339;
matrix2Truth[1][1] = 2.6305129220477;
vector2Truth[0] = 6;
vector2Truth[1] = 2.8;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth, 100 ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with a general N-D rotation test failed."
<< std::endl;
return EXIT_FAILURE;
}
/* Compose with a 2-D rotation */
aff2->Rotate(0, 1, -0.57, 1);
std::cout << "Result of 2-D rotation:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 5.04;
matrix2Truth[0][1] = 4.05;
matrix2Truth[1][0] = 2.16;
matrix2Truth[1][1] = 1.74;
vector2Truth[0] = 6;
vector2Truth[1] = 2.8;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with a 2-D rotation test failed."
<< std::endl;
return EXIT_FAILURE;
}
/* Compose with a shear */
aff2->Shear(1, 0, .2);
std::cout << "Result of shear:" << std::endl;
aff2->Print( std::cout );
matrix2Truth[0][0] = 5.04;
matrix2Truth[0][1] = 4.05;
matrix2Truth[1][0] = 3.168;
matrix2Truth[1][1] = 2.55;
vector2Truth[0] = 6;
vector2Truth[1] = 4;
if( !testMatrix( aff2->GetMatrix(), matrix2Truth ) ||
!testVector( aff2->GetOffset(), vector2Truth ) )
{
std::cout << "Composition with a shear test failed."
<< std::endl;
return EXIT_FAILURE;
}
/* Transform a point */
itk::Point<double, 2> u2, v2, v2T;
u2[0] = 3;
u2[1] = 5;
v2 = aff2->TransformPoint(u2);
std::cout << "Transform a point:" << std::endl
<< v2[0] << " , " << v2[1] << std::endl;
v2T[0] = 41.37;
v2T[1] = 26.254;
if( !testValue( v2[0], v2T[0] ) || !testValue( v2[1], v2T[1] ) )
{
std::cout << "Transform a point test failed." << std::endl;
return EXIT_FAILURE;
}
/* Back transform a point */
// v2 = aff2->BackTransform(u2);
// std::cout << "Back transform a point:" << std::endl
// << v2[0] << " , " << v2[1] << std::endl;
/* Transform a vnl_vector */
vnl_vector_fixed<double, 2> x2, y2, y2T;
x2[0] = 1;
x2[1] = 2;
y2 = aff2->TransformVector(x2);
std::cout << "Transform a vnl_vector:" << std::endl
<< y2[0] << " , " << y2[1] << std::endl;
y2T[0] = 13.14;
y2T[1] = 8.268;
if( !testValue( y2[0], y2T[0] ) || !testValue( y2[1], y2T[1] ) )
{
std::cout << "Transform a vnl_vector test failed." << std::endl;
return EXIT_FAILURE;
}
/* Back transform a vector */
// y2 = aff2->BackTransform(x2);
// std::cout << "Back transform a vnl_vector:" << std::endl
// << y2[0] << " , " << y2[1] << std::endl;
/* Transform a vector */
itk::Vector<double, 2> u3, v3, v3T;
u3[0] = 3;
u3[1] = 5;
v3 = aff2->TransformVector(u3);
std::cout << "Transform a vector:" << std::endl
<< v3[0] << " , " << v3[1] << std::endl;
v3T[0] = 35.37;
v3T[1] = 22.254;
if( !testVector( v3, v3T ) )
{
std::cout << "Transform a vector test failed." << std::endl;
return EXIT_FAILURE;
}
v3 = aff2->TransformVector(u3, u2);
std::cout << "Transform a vector with a point:" << std::endl
<< v3[0] << " , " << v3[1] << std::endl;
v3T[0] = 35.37;
v3T[1] = 22.254;
if( !testVector( v3, v3T ) )
{
std::cout << "Transform a vector with a point test failed." << std::endl;
return EXIT_FAILURE;
}
/* Transform a variable length vector */
itk::VariableLengthVector<double> l3, m3, m3T;
l3.SetSize(2);
m3T.SetSize(2);
l3[0] = 3;
l3[1] = 5;
m3 = aff2->TransformVector(l3);
std::cout << "Transform a variable length vector:" << std::endl
<< m3[0] << " , " << m3[1] << std::endl;
m3T[0] = 35.37;
m3T[1] = 22.254;
if( !testVariableVector( m3, m3T ) )
{
std::cout << "Transform a variable length vector test failed." << std::endl;
return EXIT_FAILURE;
}
/* Back transform a vector */
// v3 = aff2->BackTransform(u3);
// std::cout << "Back transform a vector :" << std::endl
// << v3[0] << " , " << v3[1] << std::endl;
/* Transform a Covariant vector */
itk::CovariantVector<double, 2> u4, v4, v4T;
u4[0] = 3;
u4[1] = 5;
v4 = aff2->TransformCovariantVector(u4);
std::cout << "Transform a Covariant vector:" << std::endl
<< v4[0] << " , " << v4[1] << std::endl;
v4T[0] = -379.16666666679;
v4T[1] = 604.16666666687;
if( !testVector( v4, v4T, 4000 ) )
{
std::cout << "Transform a covariant vector test failed." << std::endl;
return EXIT_FAILURE;
}
/* Transform a variable length vector as covariant vector */
itk::VariableLengthVector<double> l4, m4, m4T;
l4.SetSize(2);
m4T.SetSize(2);
l4[0] = 3;
l4[1] = 5;
m4 = aff2->TransformCovariantVector(l4);
std::cout << "Transform a variable length covariant vector:" << std::endl
<< m4[0] << " , " << m4[1] << std::endl;
m4T[0] = -379.16666666679;
m4T[1] = 604.16666666687;
if( !testVariableVector( m4, m4T, 4000) )
{
std::cout << "Transform a variable length covariant vector test failed." << std::endl;
return EXIT_FAILURE;
}
/* Back transform a vector */
// v4 = aff2->BackTransform(u4);
// std::cout << "Back transform a vector :" << std::endl
// << v4[0] << " , " << v4[1] << std::endl;
typedef itk::AffineTransform<double, 3> Affine3DType;
Affine3DType::MatrixType matrix3Truth;
/* Create a 3D transform and rotate in 3D */
Affine3DType::Pointer aff3 = Affine3DType::New();
itk::Vector<double, 3> axis;
axis[0] = .707;
axis[1] = .707;
axis[2] = .707;
aff3->Rotate3D(axis, 1.0, 1);
std::cout << "Create and rotate a 3D transform:" << std::endl;
aff3->Print( std::cout );
matrix3Truth[0][0] = 0.69353487057876;
matrix3Truth[0][1] = -0.33259093488348;
matrix3Truth[0][2] = 0.63905606430472;
matrix3Truth[1][0] = 0.63905606430472;
matrix3Truth[1][1] = 0.69353487057876;
matrix3Truth[1][2] = -0.33259093488348;
matrix3Truth[2][0] = -0.33259093488348;
matrix3Truth[2][1] = 0.63905606430472;
matrix3Truth[2][2] = 0.69353487057876;
if( !testMatrix( aff3->GetMatrix(), matrix3Truth, 30 ) )
{
std::cout << "3D transform rotation test failed." << std::endl;
return EXIT_FAILURE;
}
/* Generate inverse transform */
Affine3DType::Pointer inv3 = Affine3DType::New();
if( !aff3->GetInverse(inv3) )
{
std::cout << "Cannot compute inverse transformation" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Create an inverse transformation:" << std::endl;
inv3->Print( std::cout );
matrix3Truth[0][0] = 0.69353487057876;
matrix3Truth[0][1] = 0.63905606430472;
matrix3Truth[0][2] = -0.33259093488348;
matrix3Truth[1][0] = -0.33259093488348;
matrix3Truth[1][1] = 0.69353487057876;
matrix3Truth[1][2] = 0.63905606430472;
matrix3Truth[2][0] = 0.63905606430472;
matrix3Truth[2][1] = -0.33259093488348;
matrix3Truth[2][2] = 0.69353487057876;
if( !testMatrix( inv3->GetMatrix(), matrix3Truth, 40 ) )
{
std::cout << "Compute inverse test failed." << std::endl;
return EXIT_FAILURE;
}
Affine3DType::Pointer inv4 =
dynamic_cast<Affine3DType *>(aff3->GetInverseTransform().GetPointer() );
if( !inv4 )
{
std::cout << "Cannot compute inverse transformation inv4" << std::endl;
return EXIT_FAILURE;
}
std::cout << "Create an inverse transformation:" << std::endl;
inv4->Print( std::cout );
if( !testMatrix( inv4->GetMatrix(), matrix3Truth, 35 ) )
{
std::cout << "Compute inverse test failed - inv4." << std::endl;
return EXIT_FAILURE;
}
/* Test output of ComputeJacobianWithRespectToParameters */
Affine3DType::Pointer jaff = Affine3DType::New();
Affine3DType::InputPointType jpoint;
jpoint[0] = 5.0;
jpoint[1] = 10.0;
jpoint[2] = 15.0;
Affine3DType::JacobianType jaffJacobian;
jaff->ComputeJacobianWithRespectToParameters( jpoint, jaffJacobian );
std::cout << "ComputeJacobianWithRespectToParameters: " << std::endl;
std::cout << jaffJacobian << std::endl;
double data[] =
{5, 10, 15, 0, 0, 0, 0, 0, 0, 1, 0, 0,
0, 0, 0, 5, 10, 15, 0, 0, 0, 0, 1, 0,
0, 0, 0, 0, 0, 0, 5, 10, 15, 0, 0, 1};
vnl_matrix<double> vnlData( data, 3, 12 );
Affine3DType::JacobianType expectedJacobian(vnlData);
for( unsigned int i = 0; i < 3; i++ )
{
for( unsigned int j = 0; j < 12; j++ )
{
if( !testValue( expectedJacobian[i][j], jaffJacobian[i][j] ) )
{
std::cout << "ComputeJacobianWithRespectToParameters test failed." << std::endl;
return EXIT_FAILURE;
}
}
}
/* Test ComputeJacobianWithRespectToPosition. Should return Matrix. */
Affine3DType::MatrixType jaffMatrix = jaff->GetMatrix();
jaff->ComputeJacobianWithRespectToPosition( jpoint, jaffJacobian );
for( unsigned int i = 0; i < Affine3DType::MatrixType::RowDimensions; i++ )
{
for( unsigned int j = 0;
j < Affine3DType::MatrixType::ColumnDimensions; j++ )
{
if( !testValue( jaffJacobian[i][j], jaffMatrix[i][j] ) )
{
std::cout << "Failed ComputeJacobianWithRespectToPosition." << std::endl
<< "jaffJacobian: " << jaffJacobian << std::endl
<< "jaffMatrix: " << jaffMatrix << std::endl;
return EXIT_FAILURE;
}
}
}
/* Test SetParameters */
Affine3DType::Pointer paff = Affine3DType::New();
paff->Print( std::cout );
Affine3DType::ParametersType parameters1( paff->GetNumberOfParameters() );
Affine3DType::ParametersType fixed_parameters = paff->GetFixedParameters();
const size_t fixed_params_size = fixed_parameters.Size();
for(unsigned int q=0; q < fixed_params_size; ++q)
{
fixed_parameters[q] = 100.0+q;
}
paff->SetFixedParameters( fixed_parameters );
/* set up a 3x3 magic square matrix */
parameters1[0] = 8;
parameters1[1] = 1;
parameters1[2] = 6;
parameters1[3] = 3;
parameters1[4] = 5;
parameters1[5] = 7;
parameters1[6] = 4;
parameters1[7] = 9;
parameters1[8] = 2;
parameters1[9] = 5;
parameters1[10] = 5;
parameters1[11] = 5;
paff->SetParameters( parameters1 );
paff->Print( std::cout );
// TEST INVERSE OF INVERSE
Affine3DType::Pointer paff_inv = Affine3DType::New();
paff->GetInverse(paff_inv);
Affine3DType::Pointer paff_inv_inv = Affine3DType::New();
paff_inv->GetInverse(paff_inv_inv);
std::cout << "TEST INVERSE" << std::endl;
paff_inv->Print(std::cout);
std::cout << "TEST INVERSE OF INVERSE" << std::endl;
paff_inv_inv->Print(std::cout);
bool found_inv_inv_descrepancies = false;
{
Affine3DType::ParametersType parameters1_inv_inv = paff_inv_inv->GetParameters();
// Check that Inv(Inv(T)) ~= T
double mag_error = 0;
for( unsigned int q = 0; q < parameters1_inv_inv.size(); ++q)
{
const double v = ( parameters1[q] - parameters1_inv_inv[q]);
mag_error += sqrt(v);
}
if(mag_error > 1e-4 )
{
std::cout << "ERROR: Moving Parameters do not match!" << std::endl;
std::cout << parameters1 << std::endl;
std::cout << parameters1_inv_inv << std::endl;
found_inv_inv_descrepancies = true;
}
}
{
Affine3DType::ParametersType fixed_parameters_inv_inv = paff_inv_inv->GetFixedParameters();
double mag_error = 0;
for( unsigned int q = 0; q < fixed_parameters_inv_inv.size(); ++q)
{
const double v = ( fixed_parameters[q] - fixed_parameters_inv_inv[q]);
mag_error += sqrt(v);
}
if(mag_error > 1e-4 )
{
std::cout << "ERROR: Fixed Parameters do not match!" << std::endl;
std::cout << fixed_parameters << std::endl;
std::cout << fixed_parameters_inv_inv << std::endl;
found_inv_inv_descrepancies = true;
}
}
if( found_inv_inv_descrepancies )
{
std::cout << "ERROR: Inverse of Inverse does not match original!" << std::endl;
return EXIT_FAILURE;
}
Affine3DType::ParametersType parametersRead( paff->GetNumberOfParameters() );
parametersRead = paff->GetParameters();
for( unsigned int k = 0; k < paff->GetNumberOfParameters(); k++ )
{
if( !testValue( parameters1[k], parametersRead[k] ) )
{
std::cout << "SetParameters test failed." << std::endl;
return EXIT_FAILURE;
}
}
/* Test UpdateTransformParameters */
Affine3DType::DerivativeType update( paff->GetNumberOfParameters() );
Affine3DType::ParametersType updateTruth;
updateTruth = parameters1;
for( unsigned int i = 0; i < paff->GetNumberOfParameters(); i++ )
{
update[i] = i / 10.0;
updateTruth[i] += update[i];
}
/* Update all the parameters, with default scaling factor of 1 */
paff->UpdateTransformParameters( update );
parametersRead = paff->GetParameters();
for( unsigned int k = 0; k < paff->GetNumberOfParameters(); k++ )
{
if( itk::Math::NotAlmostEquals( updateTruth[k], parametersRead[k] ) )
{
std::cout << "UpdateTransformParameters 1 failed." << std::endl;
std::cout << "updateTruth: " << std::endl
<< updateTruth << std::endl
<< "parametersRead: " << std::endl
<< parametersRead << std::endl;
return EXIT_FAILURE;
}
}
/* Update with a non-unit scaling factor */
double factor = 0.5;
for( unsigned int i = 0; i < paff->GetNumberOfParameters(); i++ )
{
update[i] = i;
updateTruth[i] += update[i] * factor;
}
paff->UpdateTransformParameters( update, factor );
parametersRead = paff->GetParameters();
for( unsigned int k = 0; k < paff->GetNumberOfParameters(); k++ )
{
if( itk::Math::NotAlmostEquals( updateTruth[k], parametersRead[k] ) )
{
std::cout << "UpdateTransformParameters 2 failed." << std::endl;
return EXIT_FAILURE;
}
}
paff->SetIdentity();
paff->Print( std::cout );
{
// Test SetParameters and GetInverse
typedef itk::AffineTransform<double, 2> TransformType;
TransformType::Pointer transform = TransformType::New();
TransformType::ParametersType parameters2;
TransformType::ParametersType expectedParameters;
expectedParameters.SetSize( transform->GetNumberOfParameters() );
// check the returned parameters
// Test 1: SetIdentity
transform->SetIdentity();
parameters2 = transform->GetParameters();
expectedParameters.Fill( 0.0 );
expectedParameters[0] = 1.0;
expectedParameters[3] = 1.0;
for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
{
if( ! testValue( parameters2[k], expectedParameters[k] ) )
{
std::cout << "Test failed:" << std::endl;
std::cout << "Results=" << parameters2 << std::endl;
std::cout << "Expected=" << expectedParameters << std::endl;
any = true;
break;
}
}
// Test 2: SetParameters
expectedParameters.Fill( 0.0 );
expectedParameters[0] = 2.0;
expectedParameters[3] = 2.0;
transform->SetParameters( expectedParameters );
parameters2 = transform->GetParameters();
for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
{
if( !testValue( parameters2[k], expectedParameters[k] ) )
{
std::cout << "Test failed:" << std::endl;
std::cout << "Results=" << parameters2 << std::endl;
std::cout << "Expected=" << expectedParameters << std::endl;
any = true;
break;
}
}
// Test 3: GetInverse
expectedParameters.Fill( 0.0 );
expectedParameters[0] = 2.0;
expectedParameters[3] = 2.0;
transform->SetParameters( expectedParameters );
TransformType::Pointer other = TransformType::New();
transform->GetInverse( other );
TransformType::Pointer otherbis =
dynamic_cast<TransformType *>(transform->GetInverseTransform().GetPointer() );
parameters2 = other->GetParameters();
TransformType::ParametersType parameters2bis = otherbis->GetParameters();
expectedParameters.Fill( 0.0 );
expectedParameters[0] = 0.5;
expectedParameters[3] = 0.5;
other->Print( std::cout );
otherbis->Print( std::cout );
for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
{
if( !testValue( parameters2[k], expectedParameters[k] ) )
{
std::cout << "Test failed:" << std::endl;
std::cout << "Results=" << parameters2 << std::endl;
std::cout << "Expected=" << expectedParameters << std::endl;
any = true;
break;
}
}
for( unsigned int k = 0; k < transform->GetNumberOfParameters(); k++ )
{
if( !testValue( parameters2bis[k], expectedParameters[k] ) )
{
std::cout << "Test failed:" << std::endl;
std::cout << "Results=" << parameters2bis << std::endl;
std::cout << "Expected=" << expectedParameters << std::endl;
any = true;
break;
}
}
// Try to invert a singular transform
TransformType::Pointer singularTransform = TransformType::New();
TransformType::Pointer singularTransformInverse = TransformType::New();
singularTransform->Scale(0.0);
if( !singularTransform->GetInverse(singularTransformInverse) )
{
std::cout << "Detected an attempt to invert a singular transform as expected" << std::endl;
}
else
{
std::cout << "Failed to detect an attempt to invert a singular transform!" << std::endl;
return EXIT_FAILURE;
}
TransformType::Pointer singularTransformInverse2 =
dynamic_cast<TransformType *>(singularTransform->GetInverseTransform().GetPointer() );
if( !singularTransformInverse2 )
{
std::cout << "Detected an attempt to invert a singular transform as expected" << std::endl;
}
else
{
std::cout << "Failed to detect an attempt to invert a singular transform!" << std::endl;
return EXIT_FAILURE;
}
}
return any;
}
|