1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkImageFileReader.h"
#include "itkBSplineTransform.h"
#include "itkBSplineTransformInitializer.h"
#include "itkPermuteAxesImageFilter.h"
#include "itkObject.h"
#include "itkTestingMacros.h"
#include <fstream>
// This test is meant to demonstrate the transform domain defining issues
// associated with the current B-spline deformable transform initializer
// class. Hans Johnson pointed out that the current initializer class
// uses the image information to construct the B-spline grid in contrast
// to how the image domain resides in physical space. So, for example, if
// a user initilializes a control point grid from a given image and then
// constructs a second control point grid from a permuted version of the
// given image (using the itkPermuteAxesImageFilter class) the second control
// point grid will be oriented completely different from the first image
// even though the image and it's permuted counterpart are situated in physical
// domain precisely the same way.
int itkBSplineTransformInitializerTest2( int argc, char * argv[] )
{
if( argc < 2 )
{
std::cerr << "Missing Parameters " << std::endl;
std::cerr << "Usage: " << argv[0] << " fixedImage ";
return EXIT_FAILURE;
}
const unsigned int ImageDimension = 2;
typedef unsigned char PixelType;
typedef itk::Image< PixelType, ImageDimension > FixedImageType;
typedef itk::ImageFileReader< FixedImageType > FixedReaderType;
FixedReaderType::Pointer fixedReader = FixedReaderType::New();
fixedReader->SetFileName( argv[1] );
try
{
fixedReader->Update();
}
catch( itk::ExceptionObject & excp )
{
std::cerr << "Exception thrown " << std::endl;
std::cerr << excp << std::endl;
return EXIT_FAILURE;
}
// We first use the passed fixed image to construct the control point
// grid and save the control point locations.
FixedImageType::ConstPointer fixedImage = fixedReader->GetOutput();
const unsigned int SpaceDimension = ImageDimension;
const unsigned int SplineOrder = 3;
typedef double CoordinateRepType;
typedef itk::BSplineTransform< CoordinateRepType, SpaceDimension,
SplineOrder > TransformType;
TransformType::Pointer bsplineTransform = TransformType::New();
typedef itk::BSplineTransformInitializer< TransformType, FixedImageType >
InitializerType;
InitializerType::Pointer transformInitializer = InitializerType::New();
EXERCISE_BASIC_OBJECT_METHODS( transformInitializer, BSplineTransformInitializer,
Object );
transformInitializer->SetTransform( bsplineTransform );
TEST_SET_GET_VALUE( bsplineTransform, transformInitializer->GetTransform() );
transformInitializer->SetImage( fixedImage );
TEST_SET_GET_VALUE( fixedImage, transformInitializer->GetImage() );
TransformType::CoefficientImageArray coefficientImages;
transformInitializer->InitializeTransform();
TransformType::MeshSizeType meshSize;
meshSize[0] = 5;
meshSize[1] = 6;
bsplineTransform->SetTransformDomainMeshSize( meshSize );
coefficientImages = bsplineTransform->GetCoefficientImages();
std::vector<FixedImageType::PointType> controlPointLocations;
typedef TransformType::ImageType CoefficientImageType;
itk::ImageRegionIteratorWithIndex<CoefficientImageType> it(
coefficientImages[0], coefficientImages[0]->GetLargestPossibleRegion() );
for( it.GoToBegin(); !it.IsAtEnd(); ++it )
{
FixedImageType::PointType point;
coefficientImages[0]->TransformIndexToPhysicalPoint( it.GetIndex(),
point );
controlPointLocations.push_back( point );
}
// We permute the fixed image and construct the control point grid using
// the same grid size. The idea is that since the two images reside in
// physical space precisely the same way, the two sets of control points should
// be the same.
typedef itk::PermuteAxesImageFilter<FixedImageType> PermuterType;
PermuterType::Pointer permuter = PermuterType::New();
PermuterType::PermuteOrderArrayType array;
array[0] = 1;
array[1] = 0;
permuter->SetInput( fixedImage );
permuter->SetOrder( array );
permuter->Update();
TransformType::Pointer bsplineTransform2 = TransformType::New();
InitializerType::Pointer transformInitializer2 = InitializerType::New();
EXERCISE_BASIC_OBJECT_METHODS( transformInitializer2, BSplineTransformInitializer,
Object );
transformInitializer2->SetTransform( bsplineTransform2 );
transformInitializer2->SetImage( permuter->GetOutput() );
transformInitializer2->InitializeTransform();
bsplineTransform2->SetTransformDomainMeshSize( meshSize );
coefficientImages = bsplineTransform2->GetCoefficientImages();
std::vector<FixedImageType::PointType> controlPointLocations2;
itk::ImageRegionIteratorWithIndex<CoefficientImageType> it2(
coefficientImages[0], coefficientImages[0]->GetLargestPossibleRegion() );
for( it2.GoToBegin(); !it2.IsAtEnd(); ++it2 )
{
FixedImageType::PointType point;
coefficientImages[0]->TransformIndexToPhysicalPoint( it2.GetIndex(),
point );
controlPointLocations2.push_back( point );
}
std::vector<FixedImageType::PointType>::const_iterator it3;
std::vector<FixedImageType::PointType>::const_iterator it4;
for( it3 = controlPointLocations.begin(), it4 = controlPointLocations2.begin();
it3 != controlPointLocations.end(); ++it3, ++it4 )
{
if( *it3 != *it4 )
{
std::cerr << "Control point locations are different." << std::endl;
return EXIT_FAILURE;
}
}
return EXIT_SUCCESS;
}
|