File: itkCenteredAffineTransformTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (283 lines) | stat: -rw-r--r-- 8,557 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkCenteredAffineTransform.h"
#include "itkImage.h"

typedef  itk::Matrix<double, 2, 2> MatrixType;
typedef  itk::Vector<double, 2>    VectorType;

namespace
{

void PrintVector( const VectorType & v )
{
  for( unsigned int i = 0; i < VectorType::Dimension; i++ )
    {
    std::cout << v[i] << ", ";
    }
  std::cout << std::endl;
}

}

int itkCenteredAffineTransformTest(int, char *[])
{

  int any = 0;         // Any errors detected in testing?

  MatrixType matrix2;
  VectorType vector2;

  int i, j;

  /* FIXME: This code exercises most of the methods but doesn't
     actually check that the results are correct. */

  /* Create a 2D identity transformation and show its parameters */
  typedef itk::CenteredAffineTransform<double, 2> Affine2DType;
  Affine2DType::Pointer id2 = Affine2DType::New();
  matrix2 = id2->GetMatrix();
  vector2 = id2->GetOffset();
  std::cout << "Matrix from instantiating an identity transform:"
            << std::endl << matrix2;
  std::cout << "Vector from instantiating an identity transform:"
            << std::endl;
  PrintVector( vector2 );

  /* Create and show a simple 2D transform from given parameters */
  matrix2[0][0] = 1;
  matrix2[0][1] = 2;
  matrix2[1][0] = 3;
  matrix2[1][1] = 4;
  vector2[0] = 5;
  vector2[1] = 6;

  Affine2DType::Pointer aff2 = Affine2DType::New();
  Affine2DType::Pointer inverse2 = Affine2DType::New();
  aff2->SetMatrix( matrix2 );
  aff2->SetOffset( vector2 );
  for( i = 0; i < 2; i++ )
    {
    for( j = 0; j < 2; j++ )
      {
      matrix2[i][j] = 0.0;
      }
    vector2[i]    = 0.0;
    }
  std::cout << "Instantiation of a given 2D transform:" << std::endl;
  aff2->Print( std::cout );

  aff2->GetInverse(inverse2);
  std::cout << "Inverse matrix for the given transform:"
            << std::endl << inverse2->GetMatrix();

  /* Set parameters of a 2D transform */
  matrix2[0][0] = 6;
  matrix2[0][1] = 5;
  matrix2[1][0] = 4;
  matrix2[1][1] = 3;
  vector2[0] = 2;
  vector2[1] = 1;
  aff2->SetMatrix(matrix2);
  aff2->SetOffset(vector2);
  for( i = 0; i < 2; i++ )
    {
    for( j = 0; j < 2; j++ )
      {
      matrix2[i][j] = 0.0;
      }
    vector2[i]    = 0.0;
    }
  matrix2 = aff2->GetMatrix();
  vector2 = aff2->GetOffset();
  std::cout << "Setting the matrix in an existing transform:"
            << std::endl << matrix2;
  std::cout << "Setting the offset in an existing  transform:"
            << std::endl;
  PrintVector( vector2 );

  /* Try composition of two transformations */
  aff2->Compose( aff2 );
  std::cout << "Result of a composition:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with a translation */
  VectorType trans;
  trans[0] = 1;
  trans[1] = 2;
  aff2->Translate(trans);
  std::cout << "Result of a translation:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with an isotropic scaling */
  aff2->Scale(.3, 1);
  std::cout << "Result of isotropic scaling:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with an anisotropic scaling */
  VectorType scale;
  scale[0] = .3;
  scale[1] = .2;
  aff2->Scale(scale);
  std::cout << "Result of anisotropic scaling:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with a general N-D rotation */
  aff2->Rotate(0, 1, 0.57, 1);
  std::cout << "Result of general rotation:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with a 2-D rotation */
  aff2->Rotate(0, 1, -0.57, 1);
  std::cout << "Result of 2-D rotation:" << std::endl;
  aff2->Print( std::cout );

  /* Compose with a shear */
  aff2->Shear(1, 0, .2);
  std::cout << "Result of shear:" << std::endl;
  aff2->Print( std::cout );

  /* Transform a point */
  itk::Point<double, 2> u2, v2;
  u2[0] = 3;
  u2[1] = 5;
  v2 = aff2->TransformPoint(u2);
  std::cout << "Transform a point:" << std::endl
            << v2[0] << " , " << v2[1] << std::endl;

  // /* Back transform a point */
  // v2 = aff2->BackTransform(u2);
  // std::cout << "Back transform a point:" << std::endl
  // << v2[0] << " , " << v2[1] << std::endl;

  /* Transform a vnl_vector */
  vnl_vector_fixed<double, 2> x2, y2;
  x2[0] = 1;
  x2[1] = 2;
  y2 = aff2->TransformVector(x2);
  std::cout << "Transform a vnl_vector:" << std::endl
            << y2[0] << " , " << y2[1] << std::endl;

  // /* Back transform a vector */
  // y2 = aff2->BackTransform(x2);
  // std::cout << "Back transform a vnl_vector:" << std::endl
  // << y2[0] << " , " << y2[1] << std::endl;

  /* Transform a vector */
  itk::Vector<double, 2> u3, v3;
  u3[0] = 3;
  u3[1] = 5;
  v3 = aff2->TransformVector(u3);
  std::cout << "Transform a vector:" << std::endl
            << v3[0] << " , " << v3[1] << std::endl;

  // /* Back transform a vector */
  // v3 = aff2->BackTransform(u3);
  // std::cout << "Back transform a vector :" << std::endl
  // << v3[0] << " , " << v3[1] << std::endl;

  /* Transform a Covariant vector */
  itk::Vector<double, 2> u4, v4;
  u4[0] = 3;
  u4[1] = 5;
  v4 = aff2->TransformVector(u4);
  std::cout << "Transform a Covariant vector:" << std::endl
            << v4[0] << " , " << v4[1] << std::endl;

  // /* Back transform a vector */
  // v4 = aff2->BackTransform(u4);
  // std::cout << "Back transform a vector :" << std::endl
  // << v4[0] << " , " << v4[1] << std::endl;

  /* Create a 3D transform and rotate in 3D */
  typedef itk::CenteredAffineTransform<double, 3> Affine3DType;
  Affine3DType::Pointer  aff3 = Affine3DType::New();
  itk::Vector<double, 3> axis;
  axis[0] = .707;
  axis[1] = .707;
  axis[2] = .707;
  aff3->Rotate3D(axis, 1.0, 1);
  std::cout << "Create and rotate a 3D transform:" << std::endl;
  aff3->Print( std::cout );

  /* Generate inverse transform */
  Affine3DType::Pointer inv3 = Affine3DType::New();
  if( !aff3->GetInverse(inv3) )
    {
    std::cout << "Cannot create inverse transformation" << std::endl;
    }
  std::cout << "Create an inverse transformation:" << std::endl;
  inv3->Print( std::cout );

  Affine3DType::Pointer inv4 =
    dynamic_cast<Affine3DType *>(aff3->GetInverseTransform().GetPointer() );
  if( !inv4 )
    {
    std::cout << "Cannot compute inverse transformation" << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Create an inverse transformation:" << std::endl;
  inv4->Print( std::cout );

  /* Create an image for testing index<->physical transforms */
  std::cout << "Creating image for testing index<->physical transforms"
            << std::endl;
  double spacing[3] = {1.0, 2.0, 3.0};
  double origin[3] = {4.0, 5.0, 6.0};
  itk::Image<unsigned char, 3>::Pointer
    image = itk::Image<unsigned char, 3>::New();
  image->SetOrigin(origin);
  image->SetSpacing(spacing);

  /* Test output of ComputeJacobianWithRespectToParameters */
  Affine3DType::Pointer          jaff = Affine3DType::New();
  const Affine3DType::MatrixType jaffMatrix = jaff->GetMatrix();
  std::cout << "GetMatrix:" << std::endl;
  std::cout << jaffMatrix << std::endl;

  const Affine3DType::OffsetType jaffVector = jaff->GetOffset();
  std::cout << "GetOffset:" << std::endl;
  std::cout << jaffVector << std::endl;

  Affine3DType::InputPointType jpoint;
  jpoint[0] = 5.0;
  jpoint[1] = 10.0;
  jpoint[2] = 15.0;
  Affine3DType::JacobianType jaffJacobian;
  jaff->ComputeJacobianWithRespectToParameters( jpoint, jaffJacobian );

  std::cout << "ComputeJacobianWithRespectToParameters: " << std::endl;
  std::cout << jaffJacobian << std::endl;

  /* Get the parameters */
  Affine3DType::ParametersType parameters3D;
  parameters3D = aff3->GetParameters();

  std::cout << "Parameters 3D: " << parameters3D << std::endl;

  /* Now set the parameters of another matrix */
  jaff->SetParameters(parameters3D);

  std::cout << "A transform after SetParameters:" << std::endl;
  jaff->Print( std::cout );

  return any;
}