File: itkCenteredEuler3DTransformTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (340 lines) | stat: -rw-r--r-- 10,621 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkCenteredEuler3DTransform.h"

int itkCenteredEuler3DTransformTest(int, char *[] )
{

  std::cout << "==================================" << std::endl;
  std::cout << "Testing Centered Euler Angles 3D Transform" << std::endl << std::endl;

  const double       epsilon = 1e-10;
  const unsigned int N = 3;
  bool               Ok = true;

  typedef itk::CenteredEuler3DTransform<double> EulerTransformType;
  EulerTransformType::Pointer eulerTransform = EulerTransformType::New();

  // Testing Identity
  std::cout << "Testing identity transform: ";
  eulerTransform->SetIdentity();

  EulerTransformType::OffsetType offset = eulerTransform->GetOffset();
  if( offset[0] != 0.0
      || offset[1] != 0.0
      || offset[2] != 0.0
      )
    {
    std::cout << "[ FAILED ]" << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "[ PASSED ]" << std::endl;

  // 15 degrees in radians
  const double angleX = 15.0 * std::atan( 1.0f ) / 45.0;
  const double cx = std::cos(angleX);
  const double sx = std::sin(angleX);

  // 10 degrees in radians
  const double angleY = 10.0 * std::atan( 1.0f ) / 45.0;
  const double cy = std::cos(angleY);
  const double sy = std::sin(angleY);

  // 5 degrees in radians
  const double angleZ = 5.0 * std::atan( 1.0f ) / 45.0;
  const double cz = std::cos(angleZ);
  const double sz = std::sin(angleZ);

  std::cout << "Testing Rotation:";
  eulerTransform->SetRotation(angleX, angleY, angleZ);

  // Rotate an itk::Point
  EulerTransformType::InputPointType::ValueType pInit[3] = {10, -5, 3};
  EulerTransformType::InputPointType            p = pInit;
  EulerTransformType::InputPointType            q;

  itk::Matrix<double, 3, 3> RotationX;
  RotationX[0][0] = 1; RotationX[0][1] = 0; RotationX[0][2] = 0;
  RotationX[1][0] = 0; RotationX[1][1] = cx; RotationX[1][2] = -sx;
  RotationX[2][0] = 0; RotationX[2][1] = sx; RotationX[2][2] = cx;

  itk::Matrix<double, 3, 3> RotationY;
  RotationY[0][0] = cy; RotationY[0][1] = 0; RotationY[0][2] = sy;
  RotationY[1][0] = 0; RotationY[1][1] = 1; RotationY[1][2] = 0;
  RotationY[2][0] = -sy; RotationY[2][1] = 0; RotationY[2][2] = cy;

  itk::Matrix<double, 3, 3> RotationZ;
  RotationZ[0][0] = cz; RotationZ[0][1] = -sz; RotationZ[0][2] = 0;
  RotationZ[1][0] = sz; RotationZ[1][1] = cz; RotationZ[1][2] = 0;
  RotationZ[2][0] = 0; RotationZ[2][1] = 0; RotationZ[2][2] = 1;

  q = RotationZ * RotationX * RotationY * p; // standard transformation

  EulerTransformType::OutputPointType r;
  r = eulerTransform->TransformPoint( p );
  for( unsigned int i = 0; i < N; i++ )
    {
    if( std::fabs( q[i] - r[i] ) > epsilon )
      {
      Ok = false;
      break;
      }
    }
  if( !Ok )
    {
    std::cerr << "Error rotating point   : " << p << std::endl;
    std::cerr << "Result should be       : " << q << std::endl;
    std::cerr << "Reported Result is     : " << r << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << " [ PASSED ] " << std::endl;
    }

  std::cout << "Testing Translation:";

  eulerTransform->SetRotation(0, 0, 0);

  EulerTransformType::OffsetType::ValueType ioffsetInit[3] = {1, -4, 8};
  EulerTransformType::OffsetType            ioffset = ioffsetInit;

  eulerTransform->SetOffset( ioffset );
  std::cout << "eulerTransform: " << eulerTransform;

  q = p + ioffset;

  r = eulerTransform->TransformPoint( p );
  for( unsigned int i = 0; i < N; i++ )
    {
    if( std::fabs( q[i] - r[i] ) > epsilon )
      {
      Ok = false;
      break;
      }
    }
  if( !Ok )
    {
    std::cerr << "Error translating point: " << p << std::endl;
    std::cerr << "Result should be       : " << q << std::endl;
    std::cerr << "Reported Result is     : " << r << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << " [ PASSED ] " << std::endl;
    }

  // Testing Parameters
  std::cout << "Testing Set/Get Parameters: ";
  EulerTransformType::ParametersType parameters(9);
  parameters.Fill(0);
  for( unsigned int i = 0; i < 3; i++ )
    {
    parameters[i] = i;
    }
  for( unsigned int i = 0; i < 3; i++ )
    {
    parameters[i + 6] = i + 3;
    }

  eulerTransform->SetParameters(parameters);
  EulerTransformType::ParametersType parameters_result =
    eulerTransform->GetParameters();

  if( parameters_result[0] != 0.0
      || parameters_result[1] != 1.0
      || parameters_result[2] != 2.0
      || parameters_result[6] != 3.0
      || parameters_result[7] != 4.0
      || parameters_result[8] != 5.0
      )
    {
    std::cout << " [ FAILED ] " << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  // Testing Jacobian
  std::cout << "Testing Jacobian: ";
  for( unsigned int i = 0; i < 3; i++ )
    {
    pInit[i] = 0;
    }

  EulerTransformType::JacobianType jacobian;
  eulerTransform->ComputeJacobianWithRespectToParameters( pInit, jacobian );

  if( jacobian[0][0] != 0.0 || jacobian[0][1] != 0.0
      || jacobian[0][2] != 0.0 || jacobian[0][3] != 1.0
      || jacobian[0][4] != 0.0 || jacobian[0][5] != 0.0
      || jacobian[1][0] != 0.0 || jacobian[1][1] != 0.0
      || jacobian[1][2] != 0.0 || jacobian[1][3] != 0.0
      || jacobian[1][4] != 1.0 || jacobian[1][5] != 0.0
      || jacobian[2][0] != 0.0 || jacobian[2][1] != 0.0
      || jacobian[2][2] != 0.0 || jacobian[2][3] != 0.0
      || jacobian[2][4] != 0.0 || jacobian[2][5] != 1.0 )
    {
    std::cout << " [ FAILED ] " << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  // Really test the Jacobian
  EulerTransformType::InputPointType center;
  center[0] = 0.2;
  center[1] = 7.0;
  center[2] = 4.0;
  eulerTransform->SetCenter( center );

  eulerTransform->Print( std::cout );
  for( unsigned int pp = 0; pp < 2; pp++ )
    {
    std::cout << "Testing Jacobian when ComputeZYX is ";
    if( pp == 0 )
      {
      std::cout << "true" << std::endl;
      eulerTransform->SetComputeZYX( true );
      }
    else
      {
      std::cout << "false" << std::endl;
      eulerTransform->SetComputeZYX( false );
      }

    parameters.Fill( 0.0 );
    parameters[0] = 0.2 / 180.0 * itk::Math::pi;
    parameters[1] = -1.0 / 180.0 * itk::Math::pi;
    parameters[2] = 2.4 / 180.0 * itk::Math::pi;
    parameters[3] = 0;
    parameters[4] = 0;
    parameters[5] = 0;
    parameters[6] = 5.0;
    parameters[7] = 6.0;
    parameters[8] = 8.0;

    eulerTransform->SetParameters( parameters );

    pInit[0] = 1.0;
    pInit[1] = 1.5;
    pInit[2] = 2.6;

    eulerTransform->ComputeJacobianWithRespectToParameters( pInit, jacobian );
    std::cout << jacobian << std::endl;

    EulerTransformType::JacobianType approxJacobian = jacobian;
    for( unsigned int k = 0; k < eulerTransform->GetNumberOfParameters(); k++ )
      {
      const double                       delta = 0.001;
      EulerTransformType::ParametersType plusParameters;
      EulerTransformType::ParametersType minusParameters;

      plusParameters = parameters;
      minusParameters = parameters;
      plusParameters[k] += delta;
      minusParameters[k] -= delta;

      EulerTransformType::OutputPointType plusPoint;
      EulerTransformType::OutputPointType minusPoint;

      eulerTransform->SetParameters( plusParameters );
      plusPoint = eulerTransform->TransformPoint( pInit );
      eulerTransform->SetParameters( minusParameters );
      minusPoint = eulerTransform->TransformPoint( pInit );

      if( k < 3 || k > 5 ) // Jacobian is approx as identity for center of rotation
        {
        for( unsigned int j = 0; j < 3; j++ )
          {
          double approxDerivative = ( plusPoint[j] - minusPoint[j] )
            / ( 2.0 * delta );
          double computedDerivative = jacobian[j][k];
          approxJacobian[j][k] = approxDerivative;
          if( itk::Math::abs( approxDerivative - computedDerivative ) > 1e-5 )
            {
            std::cerr << "Error computing Jacobian [" << j << "]["
                      << k << "]" << std::endl;
            std::cerr << "Result should be: " << approxDerivative << std::endl;
            std::cerr << "Reported result is: " << computedDerivative
                      << std::endl;
            std::cerr << " [ FAILED ] " << std::endl;
            return EXIT_FAILURE;
            }
          }
        }
      }

    std::cout << approxJacobian << std::endl;
    std::cout << " [ PASSED ] " << std::endl;

    }

  std::cout << "Testing Angle from matrix : ";
  eulerTransform->SetIdentity();

  eulerTransform->SetRotation(0.2, 0.1, 0.3);

  EulerTransformType::Pointer t2 = EulerTransformType::New();
  t2->SetIdentity();
  t2->Compose(eulerTransform);
  if( (std::fabs(t2->GetParameters()[0] - 0.2) > 0.0001)
      || (std::fabs(t2->GetParameters()[1] - 0.1) > 0.0001)
      || (std::fabs(t2->GetParameters()[2] - 0.3) > 0.0001)
      )
    {
    std::cout << " [ FAILED ] " << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  std::cout << "Testing Angle from matrix (ZYX) : ";
  eulerTransform->SetIdentity();
  eulerTransform->SetComputeZYX(true);
  eulerTransform->SetRotation(0.2, 0.1, 0.3);

  t2->SetIdentity();
  t2->SetComputeZYX(true);
  t2->Compose(eulerTransform);

  if( (std::fabs(t2->GetParameters()[0] - 0.2) > 0.0001)
      || (std::fabs(t2->GetParameters()[1] - 0.1) > 0.0001)
      || (std::fabs(t2->GetParameters()[2] - 0.3) > 0.0001)
      )
    {
    std::cout << " [ FAILED ] " << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << " [ PASSED ] " << std::endl;

  EulerTransformType::Pointer t3 = EulerTransformType::New();
  t2->GetInverse( t3 );

  t3 = dynamic_cast<EulerTransformType *>(t2->GetInverseTransform().GetPointer() );
  if( !t3 )
    {
    std::cout << "Cannot compute inverse transformation" << std::endl;
    return EXIT_FAILURE;
    }

  return EXIT_SUCCESS;

}