File: itkCenteredRigid2DTransformTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (378 lines) | stat: -rw-r--r-- 10,685 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkCenteredRigid2DTransform.h"


namespace
{
static bool CheckEqual(
  const itk::Point<double, 2> & p1,
  const itk::Point<double, 2> & p2 )
{
  const double epsilon = 1e-5;

  for( unsigned int i = 0; i < 2; i++ )
    {
    if( std::fabs( p1[i] - p2[i] ) > epsilon )
      {
      std::cout << p1 << " != " << p2 << ":[ FAILED ]" << std::endl;
      return false;
      }
    }
  std::cout << p1 << " == " << p2 << ":[ PASSED ]" << std::endl;
  return true;
}

}

int itkCenteredRigid2DTransformTest(int argc, char *argv[] )
{
  if( argc < 1 )
    {
    std::cout << "Usage: " << argv[0] << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "==================================" << std::endl;
  std::cout << "Testing CenteredRigid 2D Transform" << std::endl << std::endl;

  const double       epsilon = 1e-10;
  const unsigned int N = 2;
  bool               Ok = true;

  typedef itk::CenteredRigid2DTransform<double> CenteredRigidTransformType;
  CenteredRigidTransformType::Pointer transform = CenteredRigidTransformType::New();

  // 15 degrees in radians
  const double angle = 15.0 * std::atan( 1.0f ) / 45.0;
  const double sinth = std::sin( angle );
  const double costh = std::cos( angle );

  std::cout << "Testing Rotation:";
  transform->SetAngle(angle);

  // Rotate an itk::Point
  CenteredRigidTransformType::InputPointType::ValueType pInit[2] = {10, 10};
  CenteredRigidTransformType::InputPointType            p = pInit;
  CenteredRigidTransformType::InputPointType            q;

  q[0] =  p[0] * costh - p[1] * sinth;
  q[1] =  p[0] * sinth + p[1] * costh;

  CenteredRigidTransformType::OutputPointType r = transform->TransformPoint( p );
  for( unsigned int i = 0; i < N; i++ )
    {
    if( std::fabs( q[i] - r[i] ) > epsilon )
      {
      Ok = false;
      break;
      }
    }
  if( !Ok )
    {
    std::cerr << "Error rotating point   : " << p << std::endl;
    std::cerr << "Result should be       : " << q << std::endl;
    std::cerr << "Reported Result is     : " << r << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << " [ PASSED ] " << std::endl;
    }

  std::cout << "Testing Translation:";

  transform->SetAngle(0);

  CenteredRigidTransformType::OffsetType::ValueType ioffsetInit[2] = {1, 4};
  CenteredRigidTransformType::OffsetType            ioffset = ioffsetInit;

  transform->SetOffset( ioffset );

  q = p + ioffset;

  r = transform->TransformPoint( p );
  for( unsigned int i = 0; i < N; i++ )
    {
    if( std::fabs( q[i] - r[i] ) > epsilon )
      {
      Ok = false;
      break;
      }
    }
  if( !Ok )
    {
    std::cerr << "Error translating point: " << p << std::endl;
    std::cerr << "Result should be       : " << q << std::endl;
    std::cerr << "Reported Result is     : " << r << std::endl;
    return EXIT_FAILURE;
    }
  else
    {
    std::cout << " [ PASSED ] " << std::endl;
    }

    {
    std::cout << "Testing Inverse:";

    // Populate the transform with some parameters
    CenteredRigidTransformType::Pointer transform2 = CenteredRigidTransformType::New();
    const double                        a = 0.175;
    transform2->SetAngle( a );

    CenteredRigidTransformType::InputPointType c;
    c[0] = 13.456;
    c[1] = 45.890;
    transform2->SetCenter( c );

    CenteredRigidTransformType::OutputVectorType t;
    t[0] = 9.873;
    t[1] = 40.312;
    transform2->SetTranslation( t );

    // Transform point p1 to obtain p2
    CenteredRigidTransformType::InputPointType p1;
    p1[0] = 5.63;
    p1[1] = 9.02;

    const CenteredRigidTransformType::OutputPointType p2 =
      transform2->TransformPoint( p1 );

    // Get inverse transform and transform point p2 to obtain point p3
    CenteredRigidTransformType::Pointer inverse;
    transform2->CloneInverseTo( inverse );

    CenteredRigidTransformType::OutputPointType p3 =
      inverse->TransformPoint( p2 );

    // Check that point p3 is the same as point p1
    Ok = true;
    for( unsigned int i = 0; i < N; i++ )
      {
      if( std::fabs( p1[i] - p3[i] ) > epsilon )
        {
        Ok = false;
        break;
        }
      }
    if( !Ok )
      {
      std::cerr << "Error in inverse computation" << std::endl;
      std::cerr << "Result should be       : " << p1 << std::endl;
      std::cerr << "Reported Result is     : " << p3 << std::endl;
      return EXIT_FAILURE;
      }
    else
      {
      std::cout << " [ PASSED ] " << std::endl;
      }

    // Get inverse transform and transform point p2 to obtain point p3
    CenteredRigidTransformType::Pointer inversebis
      = dynamic_cast<CenteredRigidTransformType *>(transform2->GetInverseTransform().GetPointer() );

    if( !inversebis )
      {
      std::cout << "Cannot compute inverse transformation" << std::endl;
      return EXIT_FAILURE;
      }

    p3 = inversebis->TransformPoint( p2 );

    // Check that point p3 is the same as point p1
    Ok = true;
    for( unsigned int i = 0; i < N; i++ )
      {
      if( std::fabs( p1[i] - p3[i] ) > epsilon )
        {
        Ok = false;
        break;
        }
      }
    if( !Ok )
      {
      std::cerr << "Error in inverse computation" << std::endl;
      std::cerr << "Result should be       : " << p1 << std::endl;
      std::cerr << "Reported Result is     : " << p3 << std::endl;
      return EXIT_FAILURE;
      }
    else
      {
      std::cout << " [ PASSED ] " << std::endl;
      }
    }

    {
    // Test instantiation, inverse computation, back transform etc.
    typedef CenteredRigidTransformType TransformType;
    TransformType::Pointer t1 = TransformType::New();

    // Set parameters
    TransformType::ParametersType parameters( t1->GetNumberOfParameters() );

    parameters[0] = -21.0 / 180.0 * itk::Math::pi;
    parameters[1] = 12.0;
    parameters[2] = -8.9;
    parameters[3] = 67.8;
    parameters[4] = -0.2;

    t1->SetParameters( parameters );

    TransformType::InputPointType p1;
    p1[0] = 96.8;
    p1[1] = -3.2;

    const TransformType::InputPointType p2 = t1->TransformPoint( p1 );

    // Test inverse
    TransformType::Pointer t2;
    t1->CloneInverseTo( t2 );

    TransformType::InputPointType p3 = t2->TransformPoint( p2 );

    std::cout << "Test CloneInverseTo(): ";
    if( !CheckEqual( p1, p3 ) )
      {
      return EXIT_FAILURE;
      }

    TransformType::Pointer t2dash = TransformType::New();
    t1->GetInverse( t2dash );
    TransformType::InputPointType p3dash = t2dash->TransformPoint( p2 );

    std::cout << "Test GetInverseTransform(): ";
    if( !CheckEqual( p1, p3dash ) )
      {
      return EXIT_FAILURE;
      }

    t2dash = dynamic_cast<TransformType *>(t1->GetInverseTransform().GetPointer() );
    if( !t2dash )
      {
      std::cout << "Cannot compute inverse transformation" << std::endl;
      return EXIT_FAILURE;
      }
    p3dash = t2dash->TransformPoint( p2 );

    std::cout << "Test GetInverseTransform(): ";
    if( !CheckEqual( p1, p3dash ) )
      {
      return EXIT_FAILURE;
      }

    // Test clone
    TransformType::Pointer t3;
    t1->CloneTo( t3 );

    TransformType::InputPointType p4 = t3->TransformPoint( p1 );

    std::cout << "Test Clone(): ";
    if( !CheckEqual( p2, p4 ) )
      {
      return EXIT_FAILURE;
      }

    // Test compose
    TransformType::Pointer t4 = TransformType::New();

    parameters[0] = 14.7 / 180.0 * itk::Math::pi;
    parameters[1] = 4.0;
    parameters[2] = 4.0;
    parameters[3] = 67.1;
    parameters[4] = 67.1;

    t4->SetParameters( parameters );

    TransformType::Pointer t5;
    t1->CloneTo( t5 );
    t5->Compose( t4, false );

    TransformType::InputPointType p5 = t1->TransformPoint( p1 );
    TransformType::InputPointType p6 = t4->TransformPoint( p5 );
    TransformType::InputPointType p7 = t5->TransformPoint( p1 );

    std::cout << "Test Compose(.,false): ";
    if( !CheckEqual( p6, p7 ) )
      {
      return EXIT_FAILURE;
      }

    t1->CloneTo( t5 );
    t5->Compose( t4, true );

    p5 = t4->TransformPoint( p1 );
    p6 = t1->TransformPoint( p5 );
    p7 = t5->TransformPoint( p1 );

    std::cout << "Test Compose(.,true): ";
    if( !CheckEqual( p6, p7 ) )
      {
      return EXIT_FAILURE;
      }

    // Really test the jacobian
    std::cout << "Testing Jacobian: ";
    TransformType::JacobianType jacobian;
    t4->ComputeJacobianWithRespectToParameters( p1, jacobian );

    TransformType::JacobianType approxJacobian = jacobian;
    for( unsigned int k = 0; k < t1->GetNumberOfParameters(); k++ )
      {
      const double                  delta = 0.001;
      TransformType::ParametersType plusParameters;
      TransformType::ParametersType minusParameters;

      plusParameters = parameters;
      minusParameters = parameters;
      plusParameters[k] += delta;
      minusParameters[k] -= delta;

      TransformType::OutputPointType plusPoint;
      TransformType::OutputPointType minusPoint;

      t4->SetParameters( plusParameters );
      plusPoint = t4->TransformPoint( p1 );
      t4->SetParameters( minusParameters );
      minusPoint = t4->TransformPoint( p1 );
      for( unsigned int j = 0; j < 2; j++ )
        {
        const double approxDerivative = ( plusPoint[j] - minusPoint[j] ) / ( 2.0 * delta );
        const double computedDerivative = jacobian[j][k];
        approxJacobian[j][k] = approxDerivative;
        if( itk::Math::abs( approxDerivative - computedDerivative ) > 1e-4 )
          {
          std::cerr << "Error computing Jacobian [" << j << "][" << k << "]" << std::endl;
          std::cerr << "Result should be: " << approxDerivative << std::endl;
          std::cerr << "Reported result is: " << computedDerivative << std::endl;
          std::cerr << " [ FAILED ] " << std::endl;
          return EXIT_FAILURE;
          } // if
        }   // for j

      } // for k

    std::cout << " [ PASSED ] " << std::endl;

    }

  return EXIT_SUCCESS;

}