1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include <iostream>
#include "itkCenteredRigid2DTransform.h"
namespace
{
static bool CheckEqual(
const itk::Point<double, 2> & p1,
const itk::Point<double, 2> & p2 )
{
const double epsilon = 1e-5;
for( unsigned int i = 0; i < 2; i++ )
{
if( std::fabs( p1[i] - p2[i] ) > epsilon )
{
std::cout << p1 << " != " << p2 << ":[ FAILED ]" << std::endl;
return false;
}
}
std::cout << p1 << " == " << p2 << ":[ PASSED ]" << std::endl;
return true;
}
}
int itkCenteredRigid2DTransformTest(int argc, char *argv[] )
{
if( argc < 1 )
{
std::cout << "Usage: " << argv[0] << std::endl;
return EXIT_FAILURE;
}
std::cout << "==================================" << std::endl;
std::cout << "Testing CenteredRigid 2D Transform" << std::endl << std::endl;
const double epsilon = 1e-10;
const unsigned int N = 2;
bool Ok = true;
typedef itk::CenteredRigid2DTransform<double> CenteredRigidTransformType;
CenteredRigidTransformType::Pointer transform = CenteredRigidTransformType::New();
// 15 degrees in radians
const double angle = 15.0 * std::atan( 1.0f ) / 45.0;
const double sinth = std::sin( angle );
const double costh = std::cos( angle );
std::cout << "Testing Rotation:";
transform->SetAngle(angle);
// Rotate an itk::Point
CenteredRigidTransformType::InputPointType::ValueType pInit[2] = {10, 10};
CenteredRigidTransformType::InputPointType p = pInit;
CenteredRigidTransformType::InputPointType q;
q[0] = p[0] * costh - p[1] * sinth;
q[1] = p[0] * sinth + p[1] * costh;
CenteredRigidTransformType::OutputPointType r = transform->TransformPoint( p );
for( unsigned int i = 0; i < N; i++ )
{
if( std::fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error rotating point : " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
std::cout << "Testing Translation:";
transform->SetAngle(0);
CenteredRigidTransformType::OffsetType::ValueType ioffsetInit[2] = {1, 4};
CenteredRigidTransformType::OffsetType ioffset = ioffsetInit;
transform->SetOffset( ioffset );
q = p + ioffset;
r = transform->TransformPoint( p );
for( unsigned int i = 0; i < N; i++ )
{
if( std::fabs( q[i] - r[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error translating point: " << p << std::endl;
std::cerr << "Result should be : " << q << std::endl;
std::cerr << "Reported Result is : " << r << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
{
std::cout << "Testing Inverse:";
// Populate the transform with some parameters
CenteredRigidTransformType::Pointer transform2 = CenteredRigidTransformType::New();
const double a = 0.175;
transform2->SetAngle( a );
CenteredRigidTransformType::InputPointType c;
c[0] = 13.456;
c[1] = 45.890;
transform2->SetCenter( c );
CenteredRigidTransformType::OutputVectorType t;
t[0] = 9.873;
t[1] = 40.312;
transform2->SetTranslation( t );
// Transform point p1 to obtain p2
CenteredRigidTransformType::InputPointType p1;
p1[0] = 5.63;
p1[1] = 9.02;
const CenteredRigidTransformType::OutputPointType p2 =
transform2->TransformPoint( p1 );
// Get inverse transform and transform point p2 to obtain point p3
CenteredRigidTransformType::Pointer inverse;
transform2->CloneInverseTo( inverse );
CenteredRigidTransformType::OutputPointType p3 =
inverse->TransformPoint( p2 );
// Check that point p3 is the same as point p1
Ok = true;
for( unsigned int i = 0; i < N; i++ )
{
if( std::fabs( p1[i] - p3[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error in inverse computation" << std::endl;
std::cerr << "Result should be : " << p1 << std::endl;
std::cerr << "Reported Result is : " << p3 << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
// Get inverse transform and transform point p2 to obtain point p3
CenteredRigidTransformType::Pointer inversebis
= dynamic_cast<CenteredRigidTransformType *>(transform2->GetInverseTransform().GetPointer() );
if( !inversebis )
{
std::cout << "Cannot compute inverse transformation" << std::endl;
return EXIT_FAILURE;
}
p3 = inversebis->TransformPoint( p2 );
// Check that point p3 is the same as point p1
Ok = true;
for( unsigned int i = 0; i < N; i++ )
{
if( std::fabs( p1[i] - p3[i] ) > epsilon )
{
Ok = false;
break;
}
}
if( !Ok )
{
std::cerr << "Error in inverse computation" << std::endl;
std::cerr << "Result should be : " << p1 << std::endl;
std::cerr << "Reported Result is : " << p3 << std::endl;
return EXIT_FAILURE;
}
else
{
std::cout << " [ PASSED ] " << std::endl;
}
}
{
// Test instantiation, inverse computation, back transform etc.
typedef CenteredRigidTransformType TransformType;
TransformType::Pointer t1 = TransformType::New();
// Set parameters
TransformType::ParametersType parameters( t1->GetNumberOfParameters() );
parameters[0] = -21.0 / 180.0 * itk::Math::pi;
parameters[1] = 12.0;
parameters[2] = -8.9;
parameters[3] = 67.8;
parameters[4] = -0.2;
t1->SetParameters( parameters );
TransformType::InputPointType p1;
p1[0] = 96.8;
p1[1] = -3.2;
const TransformType::InputPointType p2 = t1->TransformPoint( p1 );
// Test inverse
TransformType::Pointer t2;
t1->CloneInverseTo( t2 );
TransformType::InputPointType p3 = t2->TransformPoint( p2 );
std::cout << "Test CloneInverseTo(): ";
if( !CheckEqual( p1, p3 ) )
{
return EXIT_FAILURE;
}
TransformType::Pointer t2dash = TransformType::New();
t1->GetInverse( t2dash );
TransformType::InputPointType p3dash = t2dash->TransformPoint( p2 );
std::cout << "Test GetInverseTransform(): ";
if( !CheckEqual( p1, p3dash ) )
{
return EXIT_FAILURE;
}
t2dash = dynamic_cast<TransformType *>(t1->GetInverseTransform().GetPointer() );
if( !t2dash )
{
std::cout << "Cannot compute inverse transformation" << std::endl;
return EXIT_FAILURE;
}
p3dash = t2dash->TransformPoint( p2 );
std::cout << "Test GetInverseTransform(): ";
if( !CheckEqual( p1, p3dash ) )
{
return EXIT_FAILURE;
}
// Test clone
TransformType::Pointer t3;
t1->CloneTo( t3 );
TransformType::InputPointType p4 = t3->TransformPoint( p1 );
std::cout << "Test Clone(): ";
if( !CheckEqual( p2, p4 ) )
{
return EXIT_FAILURE;
}
// Test compose
TransformType::Pointer t4 = TransformType::New();
parameters[0] = 14.7 / 180.0 * itk::Math::pi;
parameters[1] = 4.0;
parameters[2] = 4.0;
parameters[3] = 67.1;
parameters[4] = 67.1;
t4->SetParameters( parameters );
TransformType::Pointer t5;
t1->CloneTo( t5 );
t5->Compose( t4, false );
TransformType::InputPointType p5 = t1->TransformPoint( p1 );
TransformType::InputPointType p6 = t4->TransformPoint( p5 );
TransformType::InputPointType p7 = t5->TransformPoint( p1 );
std::cout << "Test Compose(.,false): ";
if( !CheckEqual( p6, p7 ) )
{
return EXIT_FAILURE;
}
t1->CloneTo( t5 );
t5->Compose( t4, true );
p5 = t4->TransformPoint( p1 );
p6 = t1->TransformPoint( p5 );
p7 = t5->TransformPoint( p1 );
std::cout << "Test Compose(.,true): ";
if( !CheckEqual( p6, p7 ) )
{
return EXIT_FAILURE;
}
// Really test the jacobian
std::cout << "Testing Jacobian: ";
TransformType::JacobianType jacobian;
t4->ComputeJacobianWithRespectToParameters( p1, jacobian );
TransformType::JacobianType approxJacobian = jacobian;
for( unsigned int k = 0; k < t1->GetNumberOfParameters(); k++ )
{
const double delta = 0.001;
TransformType::ParametersType plusParameters;
TransformType::ParametersType minusParameters;
plusParameters = parameters;
minusParameters = parameters;
plusParameters[k] += delta;
minusParameters[k] -= delta;
TransformType::OutputPointType plusPoint;
TransformType::OutputPointType minusPoint;
t4->SetParameters( plusParameters );
plusPoint = t4->TransformPoint( p1 );
t4->SetParameters( minusParameters );
minusPoint = t4->TransformPoint( p1 );
for( unsigned int j = 0; j < 2; j++ )
{
const double approxDerivative = ( plusPoint[j] - minusPoint[j] ) / ( 2.0 * delta );
const double computedDerivative = jacobian[j][k];
approxJacobian[j][k] = approxDerivative;
if( itk::Math::abs( approxDerivative - computedDerivative ) > 1e-4 )
{
std::cerr << "Error computing Jacobian [" << j << "][" << k << "]" << std::endl;
std::cerr << "Result should be: " << approxDerivative << std::endl;
std::cerr << "Reported result is: " << computedDerivative << std::endl;
std::cerr << " [ FAILED ] " << std::endl;
return EXIT_FAILURE;
} // if
} // for j
} // for k
std::cout << " [ PASSED ] " << std::endl;
}
return EXIT_SUCCESS;
}
|