File: itkCompositeTransformTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (932 lines) | stat: -rw-r--r-- 35,334 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include <iostream>

#include "itkAffineTransform.h"
#include "itkCompositeTransform.h"
#include "itkTranslationTransform.h"
#include "itkMath.h"

namespace
{

const double epsilon = 1e-10;

template <typename TPoint>
bool testPoint( const TPoint & p1, const TPoint & p2 )
{
  bool pass = true;

  for( unsigned int i = 0; i < TPoint::PointDimension; i++ )
    {
    if( std::fabs( p1[i] - p2[i] ) > epsilon )
      {
      pass = false;
      }
    }
  return pass;
}

template <typename TMatrix>
bool testMatrix( const TMatrix & m1, const TMatrix & m2 )
{
  unsigned int i, j;
  bool         pass = true;

  for( i = 0; i < TMatrix::RowDimensions; i++ )
    {
    for( j = 0; j < TMatrix::ColumnDimensions; j++ )
      {
      if( std::fabs( m1[i][j] - m2[i][j] ) > epsilon )
        {
        pass = false;
        }
      }
    }
  return pass;
}

template <typename TArray2D>
bool testJacobian( const TArray2D & m1, const TArray2D & m2 )
{
  unsigned int i, j;
  bool         pass = true;

  for( i = 0; i < m1.rows(); i++ )
    {
    for( j = 0; j < m1.cols(); j++ )
      {
      if( std::fabs( m1[i][j] - m2[i][j] ) > epsilon )
        {
        pass = false;
        }
      }
    }
  return pass;
}

template <typename TVector>
bool testVectorArray( const TVector & v1, const TVector & v2 )
{
  bool pass = true;

  for( unsigned int i = 0; i < v1.Size(); i++ )
    {
    if( std::fabs( v1[i] - v2[i] ) > epsilon )
      {
      pass = false;
      }
    }
  return pass;
}

} // namespace

/******/

int itkCompositeTransformTest(int, char *[] )
{
  const unsigned int NDimensions = 2;

  /* Create composite transform */
  typedef itk::CompositeTransform<double, NDimensions> CompositeType;
  typedef CompositeType::ScalarType                    ScalarType;

  CompositeType::Pointer compositeTransform = CompositeType::New();

  /* Test obects */
  typedef  itk::Matrix<ScalarType, NDimensions, NDimensions> Matrix2Type;
  typedef  itk::Vector<ScalarType, NDimensions>              Vector2Type;

  /* Test that we have an empty the queue */
  if( compositeTransform->GetNumberOfTransforms() != 0 )
    {
    std::cout << "Failed. Expected GetNumberOfTransforms to return 0." << std::endl;
    return EXIT_FAILURE;
    }

  /* Add an affine transform */
  typedef itk::AffineTransform<ScalarType, NDimensions> AffineType;
  AffineType::Pointer affine = AffineType::New();
  Matrix2Type         matrix2;
  Vector2Type         vector2;
  matrix2[0][0] = 1;
  matrix2[0][1] = 2;
  matrix2[1][0] = 3;
  matrix2[1][1] = 4;
  vector2[0] = 5;
  vector2[1] = 6;
  affine->SetMatrix(matrix2);
  affine->SetOffset(vector2);

  compositeTransform->AddTransform( affine );

  /* Test that we have one transform in the queue */
  if( compositeTransform->GetNumberOfTransforms() != 1 )
    {
    std::cout << "Failed adding transform to queue." << std::endl;
    return EXIT_FAILURE;
    }

  //std::cout << "Composite Transform:" << std::endl << compositeTransform;

  /* Retrieve the transform and check that it's the same */
  std::cout << "Retrieve 1st transform." << std::endl;
  AffineType::ConstPointer affineGet = dynamic_cast<AffineType const *>( compositeTransform->GetNthTransformConstPointer(0) );
  if( affineGet.IsNull() )
    {
    std::cout << "Failed retrieving transform from queue." << std::endl;
    return EXIT_FAILURE;
    }

  std::cout << "Retrieve matrix and offset. " << std::endl;
  Matrix2Type matrix2Get = affineGet->GetMatrix();
  Vector2Type vector2Get = affineGet->GetOffset();
  if( !testMatrix(matrix2, matrix2Get) || !testVectorArray(vector2, vector2Get ) )
    {
    std::cout << "Failed retrieving correct transform data." << std::endl;
    return EXIT_FAILURE;
    }

  /* Get parameters with single transform.
   * Should be same as GetParameters from affine transform. */
  std::cout << "Get Parameters: " << std::endl;
  CompositeType::ParametersType parametersTest, parametersTruth;
  parametersTest = compositeTransform->GetParameters();
  parametersTruth = affine->GetParameters();
  std::cout << "affine parametersTruth: " << std::endl << parametersTruth
            << std::endl
            << "parametersTest from Composite: " << std::endl << parametersTest
            << std::endl;

  if( !testVectorArray( parametersTest, parametersTruth ) )
    {
    std::cout << "Failed GetParameters() for single transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Set parameters with single transform. */
  CompositeType::ParametersType parametersNew(6), parametersReturned;
  parametersNew[0] = 0;
  parametersNew[1] = 10;
  parametersNew[2] = 20;
  parametersNew[3] = 30;
  parametersNew[4] = 40;
  parametersNew[5] = 50;
  std::cout << "Set Parameters: " << std::endl;
  compositeTransform->SetParameters( parametersNew );
  std::cout << "retrieving... " << std::endl;
  parametersReturned = compositeTransform->GetParameters();
  std::cout << "parametersNew: " << std::endl << parametersNew << std::endl
            << "parametersReturned: " << std::endl << parametersReturned
            << std::endl;
  if( !testVectorArray( parametersNew, parametersReturned ) )
    {
    std::cout << "Failed SetParameters() for single transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test fixed parameters set/get */
  parametersTest = compositeTransform->GetFixedParameters();
  parametersTruth = affine->GetFixedParameters();
  std::cout << "Get Fixed Parameters: " << std::endl
            << "affine parametersTruth: " << std::endl << parametersTruth
            << std::endl
            << "parametersTest from Composite: " << std::endl << parametersTest
            << std::endl;

  if( !testVectorArray( parametersTest, parametersTruth ) )
    {
    std::cout << "Failed GetFixedParameters() for single transform." << std::endl;
    return EXIT_FAILURE;
    }

  parametersNew.SetSize( parametersTruth.Size() );
  parametersNew.Fill(1);
  parametersNew[0] = 42;

  std::cout << "Set Fixed Parameters: " << std::endl;
  compositeTransform->SetFixedParameters( parametersNew );
  std::cout << "retrieving... " << std::endl;
  parametersReturned = compositeTransform->GetFixedParameters();
  std::cout << "parametersNew: " << std::endl << parametersNew << std::endl
            << "parametersReturned: " << std::endl << parametersReturned
            << std::endl;
  if( !testVectorArray( parametersNew, parametersReturned ) )
    {
    std::cout << "Failed SetFixedParameters() for single transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Reset affine transform to original values */
  compositeTransform->ClearTransformQueue();

  affine = AffineType::New();
  affine->SetMatrix(matrix2);
  affine->SetOffset(vector2);
  compositeTransform->AddTransform( affine );

  /* Setup test point and truth value for tests */
  CompositeType::InputPointType  inputPoint;
  CompositeType::OutputPointType outputPoint, affineTruth;
  inputPoint[0] = 2;
  inputPoint[1] = 3;
  affineTruth[0] = 13;
  affineTruth[1] = 24;

  CompositeType::InputVectorType inputVector;
  CompositeType::OutputVectorType outputVector;
  inputVector[0] = 0.4;
  inputVector[1] = 0.6;

  CompositeType::InputCovariantVectorType inputCVector;
  CompositeType::OutputCovariantVectorType outputCVector;
  inputCVector[0] = 0.4;
  inputCVector[1] = 0.6;

  /* Test transforming the point with just the single affine transform */
  outputPoint = compositeTransform->TransformPoint( inputPoint );
  if( !testPoint( outputPoint, affineTruth) )
    {
    std::cout << "Failed transforming point with single transform."
              << std::endl;
    return EXIT_FAILURE;
    }

  /* Test inverse */
  CompositeType::Pointer         inverseTransform = CompositeType::New();
  CompositeType::OutputPointType inverseTruth, inverseOutput;
  if( !compositeTransform->GetInverse( inverseTransform ) )
    {
    std::cout << "ERROR: GetInverse() failed." << std::endl;
    return EXIT_FAILURE;
    }
  inverseTruth = inputPoint;
  inverseOutput = inverseTransform->TransformPoint( affineTruth );
  std::cout << "Transform point with inverse composite transform: "
            << std::endl
            << "  Test point: " << affineTruth << std::endl
            << "  Truth: " << inverseTruth << std::endl
            << "  Output: " << inverseOutput << std::endl;
  if( !testPoint( inverseOutput, inverseTruth ) )
    {
    std::cout << "Failed transform point with inverse composite transform (1)."
              << std::endl;
    return EXIT_FAILURE;
    }

  /* Test ComputeJacobianWithRespectToParameters */

  CompositeType::JacobianType   jacComposite, jacSingle;
  CompositeType::InputPointType jacPoint;
  jacPoint[0] = 1;
  jacPoint[1] = 2;
  affine->ComputeJacobianWithRespectToParameters( jacPoint, jacSingle );
  std::cout << "Single jacobian:" << std::endl << jacSingle << std::endl;
  compositeTransform->ComputeJacobianWithRespectToParameters( jacPoint, jacComposite );
  std::cout << "Composite jacobian:" << std::endl << jacComposite << std::endl;
  if( !testJacobian( jacComposite, jacSingle ) )
    {
    std::cout << "Failed getting jacobian for single transform." << std::endl;
    return EXIT_FAILURE;
    }

  /*
   * Create and add 2nd transform
   */
  AffineType::Pointer affine2 = AffineType::New();
  matrix2[0][0] = 11;
  matrix2[0][1] = 22;
  matrix2[1][0] = 33;
  matrix2[1][1] = 44;
  vector2[0] = 55;
  vector2[1] = 65;
  affine2->SetMatrix(matrix2);
  affine2->SetOffset(vector2);

  compositeTransform->ClearTransformQueue();
  compositeTransform->AppendTransform( affine2 );
  compositeTransform->PrependTransform( affine );

  std::cout << std::endl << "Two-component Composite Transform:"
            << std::endl << compositeTransform;
  std::cout << std::endl << "Transform at queue position 0: "
            << std::endl << compositeTransform->GetNthTransformConstPointer( 0 );

  /* Test that we have two tranforms in the queue */
  if( compositeTransform->GetNumberOfTransforms() != 2 )
    {
    std::cout << "Failed adding 2nd transform to queue." << std::endl;
    return EXIT_FAILURE;
    }

  /* Transform a point with both transforms. Remember that transforms
   * are applied in *reverse* queue order, with most-recently added transform first. */
  CompositeType::OutputPointType compositeTruth;
  compositeTruth = affine2->TransformPoint( inputPoint );
  compositeTruth = affine->TransformPoint( compositeTruth );

  outputPoint = compositeTransform->TransformPoint( inputPoint );
  std::cout << "Transform point with two-component composite transform: "
            << std::endl
            << "  Test point: " << inputPoint << std::endl
            << "  Truth: " << compositeTruth << std::endl
            << "  Output: " << outputPoint << std::endl;

  if( !testPoint( outputPoint, compositeTruth) )
    {
    std::cout << "Failed transforming point with two transforms."
              << std::endl;
    return EXIT_FAILURE;
    }

  CompositeType::OutputVectorType compositeTruthVector;
  compositeTruthVector = affine2->TransformVector( inputVector );
  compositeTruthVector = affine->TransformVector( compositeTruthVector );
  outputVector = compositeTransform->TransformVector( inputVector );
  std::cout << "Transform vector with two-component composite transform: "
            << std::endl
            << "  Test vector: " << inputVector << std::endl
            << "  Truth: " << compositeTruthVector << std::endl
            << "  Output: " << outputVector << std::endl;

  CompositeType::OutputCovariantVectorType compositeTruthCVector;
  compositeTruthCVector = affine2->TransformCovariantVector( inputCVector );
  compositeTruthCVector = affine->TransformCovariantVector( compositeTruthCVector );
  outputCVector = compositeTransform->TransformCovariantVector( inputCVector );
  std::cout << "Transform covariant vector with two-component composite transform: "
            << std::endl
            << "  Test vector: " << inputCVector << std::endl
            << "  Truth: " << compositeTruthCVector << std::endl
            << "  Output: " << outputCVector << std::endl;


  CompositeType::InputDiffusionTensor3DType inputTensor;
  CompositeType::OutputDiffusionTensor3DType outputTensor;
  inputTensor[0] = 3.0;
  inputTensor[1] = 0.3;
  inputTensor[2] = 0.2;
  inputTensor[3] = 2.0;
  inputTensor[4] = 0.1;
  inputTensor[5] = 1.0;
  CompositeType::OutputDiffusionTensor3DType compositeTruthTensor;
  compositeTruthTensor = affine2->TransformDiffusionTensor3D( inputTensor );
  compositeTruthTensor = affine->TransformDiffusionTensor3D( compositeTruthTensor );
  outputTensor = compositeTransform->TransformDiffusionTensor3D( inputTensor );
  std::cout << "Transform tensor with two-component composite transform: "
            << std::endl
            << "  Test tensor: " << inputTensor << std::endl
            << "  Truth: " << compositeTruthTensor << std::endl
            << "  Output: " << outputTensor << std::endl;

  CompositeType::InputSymmetricSecondRankTensorType inputSTensor;
  CompositeType::OutputSymmetricSecondRankTensorType outputSTensor;
  inputSTensor(1,0) = 0.5;
  inputSTensor(0,0) = 3.0;
  inputSTensor(1,1) = 2.0;

  CompositeType::OutputSymmetricSecondRankTensorType compositeTruthSTensor;
  compositeTruthSTensor = affine2->TransformSymmetricSecondRankTensor( inputSTensor );
  compositeTruthSTensor = affine->TransformSymmetricSecondRankTensor( compositeTruthSTensor );
  outputSTensor = compositeTransform->TransformSymmetricSecondRankTensor( inputSTensor );
  std::cout << "Transform tensor with two-component composite transform: "
            << std::endl
            << "  Test tensor: " << inputSTensor << std::endl
            << "  Truth: " << compositeTruthSTensor << std::endl
            << "  Output: " << outputSTensor << std::endl;

  /* Test inverse with two transforms, with only one set to optimize. */
  compositeTransform->SetAllTransformsToOptimize( false );
  compositeTransform->SetNthTransformToOptimizeOn( 0 );
  if( !compositeTransform->GetInverse( inverseTransform ) )
    {
    std::cout << "Expected GetInverse() to succeed." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Inverse two-component transform: " << inverseTransform;

  /* Check that optimization flag inverse worked */
  if( inverseTransform->GetNthTransformToOptimize( 0 ) ||
      !inverseTransform->GetNthTransformToOptimize( 1 ) )
    {
    std::cout << "GetInverse failed for TransformsToOptimize flags."
              << std::endl;
    return EXIT_FAILURE;
    }
  compositeTransform->SetAllTransformsToOptimizeOn(); // Set back to do all.
  inverseTransform->SetAllTransformsToOptimizeOn();

  /* Transform point with inverse */
  inverseTruth = inputPoint;
  inverseOutput = inverseTransform->TransformPoint( compositeTruth );
  std::cout << "Transform point with two-component inverse composite transform: "
            << std::endl
            << "  Test point: " << compositeTruth << std::endl
            << "  Truth: " << inverseTruth << std::endl
            << "  Output: " << inverseOutput << std::endl;
  if( !testPoint( inverseOutput, inverseTruth ) )
    {
    std::cout << "Failed transform point with two-component inverse composite transform."
              << std::endl;
    return EXIT_FAILURE;
    }

  /* Get inverse transform again, but using other accessor. */
  CompositeType::ConstPointer inverseTransform2;
  std::cout << "Call GetInverseTransform():" << std::endl;
  inverseTransform2 = dynamic_cast<const CompositeType *>( compositeTransform->GetInverseTransform().GetPointer() );
  if( !inverseTransform2 )
    {
    std::cout << "Failed calling GetInverseTransform()." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Transform point: " << std::endl;
  inverseOutput = inverseTransform2->TransformPoint( compositeTruth );
  if( !testPoint( inverseOutput, inverseTruth ) )
    {
    std::cout << "Failed transform point with two-component inverse composite transform (2)." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test IsLinear() by calling on each sub transform */
  std::cout << "Test IsLinear" << std::endl;
  bool allAreLinear = true;
  for( unsigned int n = 0; n < compositeTransform->GetNumberOfTransforms(); n++ )
    {
    if( !compositeTransform->GetNthTransformConstPointer( n )->IsLinear() )
      {
      allAreLinear = false;
      }
    }
  if( compositeTransform->IsLinear() != allAreLinear )
    {
    std::cout << "compositeTransform returned unexpected value for IsLinear(). Expected " << allAreLinear << std::endl;
    return EXIT_FAILURE;
    }

  /* Test GetNumberOfParameters */
  std::cout << "GetNumberOfParameters: " << std::endl;
  unsigned int affineParamsN = affine->GetNumberOfParameters();
  unsigned int affine2ParamsN = affine2->GetNumberOfParameters();
  unsigned int nParameters = compositeTransform->GetNumberOfParameters();
  std::cout << "Number of parameters: " << nParameters << std::endl;
  if( nParameters != affineParamsN + affine2ParamsN )
    {
    std::cout << "GetNumberOfParameters failed for multi-transform."
              << std::endl << "Expected " << affineParamsN + affine2ParamsN
              << std::endl;
    }

  /* Get parameters with multi-transform. They're filled from transforms in
   * same order as transforms are applied, from back of queue to front. */
  parametersTest = compositeTransform->GetParameters();
  parametersTruth.SetSize( affine2ParamsN + affineParamsN );
  /* Fill using different method than is used in the class.
     Remember we added affine2 2nd, so it's at front of queue */
  for( unsigned int n = 0; n < affine2ParamsN; n++ )
    {
    parametersTruth.SetElement(
      n, affine2->GetParameters().GetElement( n ) );
    }
  for( unsigned int n = 0; n < affineParamsN; n++ )
    {
    parametersTruth.SetElement( n + affine2ParamsN,
                                affine->GetParameters().GetElement( n ) );
    }
  std::cout << "Get Multi-transform Parameters: " << std::endl
            << "parametersTruth: " << std::endl << parametersTruth
            << std::endl
            << "parametersTest from Composite: " << std::endl << parametersTest
            << std::endl;

  if( !testVectorArray( parametersTest, parametersTruth ) )
    {
    std::cout << "Failed GetParameters() for multi transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Set parameters with multi transform. */
  parametersNew.SetSize( parametersTruth.Size() );
  parametersNew.Fill( 3.14 );
  parametersNew[0] = 19;
  parametersNew[parametersTruth.Size() - 1] = 71;
  std::cout << "Set Multi-transform Parameters: " << std::endl;
  compositeTransform->SetParameters( parametersNew );
  std::cout << "retrieving... " << std::endl;
  parametersReturned = compositeTransform->GetParameters();
  std::cout << "parametersNew: " << std::endl << parametersNew << std::endl
            << "parametersReturned: " << std::endl << parametersReturned
            << std::endl;
  if( !testVectorArray( parametersNew, parametersReturned ) )
    {
    std::cout << "Failed SetParameters() for multi transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test get fixed parameters with multi-transform */
  parametersTest = compositeTransform->GetFixedParameters();
  affineParamsN = affine->GetFixedParameters().Size();
  affine2ParamsN = affine2->GetFixedParameters().Size();
  parametersTruth.SetSize( affine2ParamsN + affineParamsN );
  parametersTruth.Fill(0); // Try this to quiet valgrind
  for( unsigned int n = 0; n < affine2ParamsN; n++ )
    {
    parametersTruth.SetElement(
      n, affine2->GetFixedParameters().GetElement( n ) );
    }
  for( unsigned int n = 0; n < affineParamsN; n++ )
    {
    parametersTruth.SetElement( n + affine2ParamsN,
                                affine->GetFixedParameters().GetElement( n ) );
    }
  std::cout << "Get Multi-transform Fixed Parameters: " << std::endl
            << "parametersTruth: " << std::endl << parametersTruth
            << std::endl
            << "parametersTest: " << std::endl << parametersTest
            << std::endl;

  if( !testVectorArray( parametersTest, parametersTruth ) )
    {
    std::cout << "Failed GetFixedParameters() for multi transform." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test set fixed parameters with multi-transform */
  std::cout << "Set Multi-transform Fixed Parameters: " << std::endl;
  compositeTransform->SetFixedParameters( parametersTruth );
  std::cout << "retrieving... " << std::endl;
  parametersReturned = compositeTransform->GetFixedParameters();
  std::cout << "parametersTruth: " << std::endl << parametersTruth << std::endl
            << "parametersReturned: " << std::endl << parametersReturned
            << std::endl;
  // std::cout << "Composite Transform: " << std::endl << compositeTransform;
  if( !testVectorArray( parametersTruth, parametersReturned ) )
    {
    std::cout << "Failed SetFixedParameters() for multi transform." << std::endl;
    return EXIT_FAILURE;
    }

  /*
   * Add a third transform
   */

  /* Add yet another affine transform */
  AffineType::Pointer affine3 = AffineType::New();
  matrix2[0][0] = 1.1;
  matrix2[0][1] = 2.2;
  matrix2[1][0] = 3.3;
  matrix2[1][1] = 4.4;
  vector2[0] = 5.5;
  vector2[1] = 6.5;
  affine3->SetMatrix(matrix2);
  affine3->SetOffset(vector2);

  compositeTransform->AddTransform( affine3 );
  // std::cout << "compositeTransform with 3 subs: "
  //          << std::endl << compositeTransform << std::endl;

  /* Reset first affine to non-singular values */
  matrix2[0][0] = 1;
  matrix2[0][1] = 2;
  matrix2[1][0] = 3;
  matrix2[1][1] = 4;
  vector2[0] = 5;
  vector2[1] = 6;
  affine->SetMatrix(matrix2);
  affine->SetOffset(vector2);

  /* Test TransformsToOptimize flags */
  compositeTransform->SetAllTransformsToOptimizeOff();
  if( compositeTransform->GetNthTransformToOptimize(0) ||
      compositeTransform->GetNthTransformToOptimize(1) ||
      compositeTransform->GetNthTransformToOptimize(2) )
    {
    std::cout << "Failed clearing all TransformToOptimize flags. " << std::endl;
    return EXIT_FAILURE;
    }

  compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
  if( compositeTransform->GetNthTransformToOptimize(0) ||
      compositeTransform->GetNthTransformToOptimize(1) ||
      !compositeTransform->GetNthTransformToOptimize(2) )
    {
    std::cout << "Failed setting only most recent TransformsToOptimize flag. "
              << std::endl;
    return EXIT_FAILURE;
    }

  /* Test accessors */
  CompositeType::TransformQueueType transformQueue =
    compositeTransform->GetTransformQueue();
  if( transformQueue.size() != 3 )
    {
    std::cout << "Failed getting transform queue." << std::endl;
    return EXIT_FAILURE;
    }
  std::cout << "Got TransformQueue." << std::endl;

  CompositeType::TransformsToOptimizeFlagsType flagsQueue =
    compositeTransform->GetTransformsToOptimizeFlags();
  if( flagsQueue.size() != 3 )
    {
    std::cout << "Failed getting optimize flags queue." << std::endl;
    return EXIT_FAILURE;
    }

  /* Get inverse and check TransformsToOptimize flags are correct */
  CompositeType::ConstPointer inverseTransform3;
  inverseTransform3 = dynamic_cast<const CompositeType *>
    ( compositeTransform->GetInverseTransform().GetPointer() );
  if( !inverseTransform3 )
    {
    std::cout << "Failed calling GetInverseTransform() (3)." << std::endl;
    return EXIT_FAILURE;
    }
  if( !inverseTransform3->GetNthTransformToOptimize(0) ||
      inverseTransform3->GetNthTransformToOptimize(1) ||
      inverseTransform3->GetNthTransformToOptimize(2) )
    {
    std::cout << "Failed checking TransformsToOptimize flags on inverse. "
              << std::endl;
    return EXIT_FAILURE;
    }

  /* Test get params with only 1st and last transforms set to optimize.
   * This implicitly tests the m_PreviousTransformsToOptimizeUpdateTime mechanism
   * for updating m_TransformsToOptimizeQueue.
   * This includes the affine and affine3 transforms */

  compositeTransform->SetNthTransformToOptimize(0, true);
  if( !compositeTransform->GetNthTransformToOptimize(0) ||
      compositeTransform->GetNthTransformToOptimize(1) ||
      !compositeTransform->GetNthTransformToOptimize(2) )
    {
    std::cout << "Failed setting last TransformToOptimize flag. "
              << "Composite Transform: " << std::endl << compositeTransform
              << std::endl;
    return EXIT_FAILURE;
    }

  parametersTest = compositeTransform->GetParameters();
  affineParamsN = affine->GetNumberOfParameters();
  unsigned int affine3ParamsN = affine3->GetNumberOfParameters();
  parametersTruth.SetSize( affineParamsN + affine3ParamsN );
  for( unsigned int n = 0; n < affine3ParamsN; n++ )
    {
    parametersTruth.SetElement(
      n, affine3->GetParameters().GetElement( n ) );
    }
  for( unsigned int n = 0; n < affineParamsN; n++ )
    {
    parametersTruth.SetElement( n + affine3ParamsN,
                                affine->GetParameters().GetElement( n ) );
    }
  std::cout << "Get 1st and 3rd transform Parameters: " << std::endl
            << "parametersTruth: " << std::endl << parametersTruth
            << std::endl
            << "parametersTest from Composite: " << std::endl << parametersTest
            << std::endl;

  if( !testVectorArray( parametersTest, parametersTruth ) )
    {
    std::cout << "Failed GetParameters() for 1st and 3rd transforms." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test ComputeJacobianWithRespectToParameters with three transforms, two of which (1st and 3rd) are active.
   * Remember that the point gets transformed by preceding transforms
   * before its used for individual Jacobian. */
  std::cout << "Test ComputeJacobianWithRespectToParameters with three transforms: " << std::endl;
  CompositeType::JacobianType   jacTruth, jacComposite2, jacAffine, jacAffine3;
  CompositeType::InputPointType jacPoint2;
  jacPoint2[0] = 1;
  jacPoint2[1] = 2;
  compositeTransform->ComputeJacobianWithRespectToParameters( jacPoint2, jacComposite2 );
  affine3->ComputeJacobianWithRespectToParameters( jacPoint2, jacAffine3 );
  jacPoint2 = affine3->TransformPoint( jacPoint2 );
  jacPoint2 = affine2->TransformPoint( jacPoint2 );
  affine->ComputeJacobianWithRespectToParameters( jacPoint2, jacAffine );
  jacTruth.SetSize( jacAffine3.rows(), jacAffine.cols() + jacAffine3.cols() );
  jacTruth.update( affine->GetMatrix() * affine2->GetMatrix() * jacAffine3, 0, 0 );
  jacTruth.update( jacAffine, 0, jacAffine3.cols() );
  std::cout << "transformed jacPoint: " << jacPoint2 << std::endl;
  std::cout << "Affine jacobian:" << std::endl << jacAffine;
  std::cout << "affine3 jacobian:" << std::endl << jacAffine3;
  std::cout << "Truth jacobian:" << std::endl << jacTruth;
  std::cout << "Composite jacobian:" << std::endl << jacComposite2;
  if( !testJacobian( jacComposite2, jacTruth ) )
    {
    std::cout << "Failed getting jacobian for two active transforms." << std::endl;
    return EXIT_FAILURE;
    }

  /* Test UpdateTransformParameters.
   * NOTE Once there are transforms that do something other than simple
   * addition in TransformUpdateParameters, this should be updated here.
   */
    {
    /* Single transform full update, of last transform only */
    compositeTransform->SetOnlyMostRecentTransformToOptimizeOn();
    CompositeType::ParametersType truth = compositeTransform->GetParameters();
    CompositeType::DerivativeType
    update( compositeTransform->GetNumberOfParameters() );
    update.Fill(10);
    truth += update;
    compositeTransform->UpdateTransformParameters( update );
    CompositeType::ParametersType
      updateResult = compositeTransform->GetParameters();
    std::cout << "Testing UpdateTransformParameters 1. "
              << std::endl;
    if( !testVectorArray( truth, updateResult ) )
      {
      std::cout << "UpdateTransformParameters 1 failed. " << std::endl
                << " truth:  " << truth << std::endl
                << " result: " << updateResult << std::endl;
      return EXIT_FAILURE;
      }

    /* Update partially two transforms, with a scaling factor */
    compositeTransform->SetNthTransformToOptimizeOn(0);
    truth = compositeTransform->GetParameters();
    update.SetSize( compositeTransform->GetNumberOfParameters() );
    AffineType::ScalarType factor = 0.5;
    for( unsigned int i = 0;
         i < compositeTransform->GetNumberOfParameters(); i++ )
      {
      update[i] = i;
      truth[i] += update[i] * factor;
      }
    compositeTransform->UpdateTransformParameters( update, factor );
    updateResult = compositeTransform->GetParameters();
    std::cout << "Testing UpdateTransformParameters 3. "
              << std::endl;
    if( !testVectorArray( truth, updateResult ) )
      {
      std::cout << "UpdateTransformParameters 3 failed. " << std::endl
                << " truth:  " << truth << std::endl
                << " result: " << updateResult << std::endl;
      return EXIT_FAILURE;
      }
    }

  /* Test RemoveTransform */
  bool opt1 = compositeTransform->GetTransformsToOptimizeFlags()[0];
  bool opt2 = compositeTransform->GetTransformsToOptimizeFlags()[1];
  compositeTransform->RemoveTransform();
  if( compositeTransform->GetNumberOfTransforms() != 2 )
    {
    std::cout << "ERROR: expected 2 transforms, got " << compositeTransform->GetNumberOfTransforms() << std::endl;
    return EXIT_FAILURE;
    }
  if( affine != compositeTransform->GetNthTransformConstPointer( 0 ) )
    {
    std::cout << "ERROR: 1st transform is not affine" << std::endl;
    return EXIT_FAILURE;
    }
  if( affine2 != compositeTransform->GetNthTransformConstPointer( 1 ) )
    {
    std::cout << "ERROR: 2nd transform is not affine2" << std::endl;
    return EXIT_FAILURE;
    }
  if( compositeTransform->GetTransformsToOptimizeFlags().size() != 2 )
    {
    std::cout << "ERROR: TransformsToOptimizeQueue is not length 2. It is " << compositeTransform->GetTransformsToOptimizeFlags().size() << std::endl;
    return EXIT_FAILURE;
    }
  if( compositeTransform->GetNthTransformToOptimize(0) != opt1 )
    {
    std::cout << "ERROR: TransformsToOptimizeFlags[0] is not " << opt1 << std::endl;
    return EXIT_FAILURE;
    }
  if( compositeTransform->GetNthTransformToOptimize(1) != opt2 )
    {
    std::cout << "ERROR: TransformsToOptimizeFlags[1] is not " << opt2 << std::endl;
    return EXIT_FAILURE;
    }

  /*
   * Test flattening transform queue in the case of nested composite
   * transforms
   */

  CompositeType::Pointer nestedCompositeTransform = CompositeType::New();
  CompositeType::Pointer compositeTransform1 = CompositeType::New();
  CompositeType::Pointer compositeTransform2 = CompositeType::New();
  CompositeType::Pointer compositeTransform3 = CompositeType::New();
  CompositeType::Pointer compositeTransform4 = CompositeType::New();

  typedef itk::TranslationTransform<double, NDimensions>  TranslationTransformType;
  typedef TranslationTransformType::Pointer               TranslationTransformPointer;
  typedef std::vector<TranslationTransformPointer>        TranslationTransformVector;
  TranslationTransformVector  translationTransformVector(12);
  for( itk::SizeValueType n=0; n < 12; n++ )
    {
    translationTransformVector[n] = TranslationTransformType::New();
    TranslationTransformType::ParametersType params(NDimensions);
    params.Fill(n);
    translationTransformVector[n]->SetParameters( params );
    }

  compositeTransform1->AddTransform( translationTransformVector[0] );
  compositeTransform1->AddTransform( translationTransformVector[1] );
  compositeTransform1->AddTransform( translationTransformVector[2] );

  compositeTransform2->AddTransform( translationTransformVector[3] );
  compositeTransform2->AddTransform( translationTransformVector[4] );

  compositeTransform3->AddTransform( translationTransformVector[5] );
  compositeTransform3->AddTransform( translationTransformVector[6] );

  compositeTransform4->AddTransform( translationTransformVector[7] );
  compositeTransform4->AddTransform( translationTransformVector[8] );
  compositeTransform4->AddTransform( translationTransformVector[9] );
  compositeTransform4->AddTransform( compositeTransform3 );

  nestedCompositeTransform->AddTransform( compositeTransform1 );
  nestedCompositeTransform->AddTransform( translationTransformVector[10] );
  nestedCompositeTransform->AddTransform( compositeTransform2 );
  nestedCompositeTransform->AddTransform( compositeTransform4 );
  nestedCompositeTransform->AddTransform( translationTransformVector[11] );

  std::cout << "Number of transforms before flattening = " << nestedCompositeTransform->GetNumberOfTransforms() << std::endl;
  if( nestedCompositeTransform->GetNumberOfTransforms() != 5 )
    {
    std::cerr << "Error.  Should be 5." << std::endl;
    return EXIT_FAILURE;
    }

  nestedCompositeTransform->FlattenTransformQueue();
  std::cout << "Number of transforms after flattening = " << nestedCompositeTransform->GetNumberOfTransforms() << std::endl;
  if( nestedCompositeTransform->GetNumberOfTransforms() != 12 )
    {
    std::cerr << "Error.  Should be 12." << std::endl;
    return EXIT_FAILURE;
    }

  /* Verify the transform order */
  bool passed = true;
  for( itk::SizeValueType n=0; n < 12; n++ )
    {
    const TranslationTransformType::ParametersType & params = translationTransformVector[n]->GetParameters();
    if( itk::Math::NotExactlyEquals(params[0], n) )
      {
      passed = false;
      }
    }
  if( !passed )
    {
    std::cout << "Transform are not in correct order after flattening: " << std::endl;
    for( itk::SizeValueType n=0; n < 12; n++ )
      {
      const TranslationTransformType::ParametersType & params = translationTransformVector[n]->GetParameters();
      std::cout << " " << params[0];
      }
    std::cout << std::endl;
    return EXIT_FAILURE;
    }

  /* Test SetParameters with wrong size array */
  std::cout << "Test SetParameters with wrong size array." << std::endl;
  parametersTruth.SetSize(1);
  bool caught = false;
  try
    {
    compositeTransform->SetParameters( parametersTruth );
    }
  catch( itk::ExceptionObject & excp )
    {
    caught = true;
    std::cout << "\nCaught expected exception:" << std::endl;
    std::cout << excp << std::endl;
    }
  if( !caught )
    {
    std::cerr << "Expected exception calling SetParameters with wrong size"
              << std::endl;

    return EXIT_FAILURE;
    }

  /* Test printing */
  compositeTransform->Print(std::cout);

  std::cout << "Passed test!" << std::endl;
  return EXIT_SUCCESS;

}