File: itkMinMaxCurvatureFlowImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (325 lines) | stat: -rw-r--r-- 9,363 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkMinMaxCurvatureFlowImageFilter.h"
#include "itkCommand.h"
#include "vnl/vnl_sample.h"

namespace
{

// The following class is used to support callbacks
// on the filter in the pipeline that follows later
class ShowProgressObject
{
public:
  ShowProgressObject(itk::ProcessObject* o)
    {m_Process = o;}
  void ShowProgress()
    {std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
  itk::ProcessObject::Pointer m_Process;
};
}

#define MAXRUNS 5 // maximum number of runs

template<unsigned int VImageDimension>
int testMinMaxCurvatureFlow(
  itk::Size<VImageDimension> & size,
  double radius,
  int numberOfRuns,
  unsigned int niter[],
  unsigned long radii[] );

/**
 * This file tests the functionality of the MinMaxCurvatureFlowImageFilter.
 * The test uses a binary image of a circle/sphere with intensity value
 * of 0 (black). The background is white ( intensity = 255 ).
 * X% salt and pepper noise is added to the the input image. Specifically,
 * X% of the pixels is replaced with a value chosen from a uniform
 * distribution between 0 and 255.
 *
 * We then test the ability of MinMaxCurvatureFlowImageFilter to denoise
 * the image.
 */
int itkMinMaxCurvatureFlowImageFilterTest(int, char* [] )
{

  double radius;
  int numberOfRuns;
  unsigned int niter[MAXRUNS];
  unsigned long radii[MAXRUNS];

  itk::Size<2> size2D;
  size2D[0] = 32; size2D[1] = 32;
  radius = 10.0;
  // numberOfRuns = 2;  /* reduced to speedup purify */
  numberOfRuns = 1;
  niter[0] = 100; niter[1] = 100;
  radii[0] = 1; radii[1] = 3;
  int err2D = testMinMaxCurvatureFlow( size2D, radius, numberOfRuns,
    niter, radii );


  /* Dummy tests to test 3D and ND.
     Tests were taking too long on purify.
     Reduced number of iterations to 1 which is not
     sufficient to denoise the image.
     Increase the number of interations to get better results.
   */
  itk::Size<3> size3D;
  size3D[0] = 32; size3D[1] = 32; size3D[2] = 32;
  radius = 10.0;
  numberOfRuns = 1;
  // niter[0] = 20;  /* reduced to speedup purify */
  niter[0] = 1;
  radii[1] = 1;
  int err3D = testMinMaxCurvatureFlow( size3D, radius, numberOfRuns,
    niter, radii );

  itk::Size<4> size4D;
  size4D[0] = 8; size4D[1] = 8; size4D[2] = 8; size4D[3] = 8;
  radius = 2.6;
  // niter[0] = 10;  /* reduced to speedup purify */
  numberOfRuns = 1;
  niter[0] = 1;
  radii[1] = 1;
  int err4D = testMinMaxCurvatureFlow( size4D, radius, numberOfRuns,
    niter, radii );

  std::cout << "2D Test passed: " << !err2D << std::endl;
  std::cout << "3D Test passed: " << !err3D << std::endl;
  std::cout << "4D Test passed: " << !err4D << std::endl;

  if ( err2D /*|| err3D || err4D*/ )
    {
    return EXIT_FAILURE;
    }
  return EXIT_SUCCESS;

}


template<unsigned int VImageDimension>
int testMinMaxCurvatureFlow(
  itk::Size<VImageDimension> & size, // ND image size
  double radius,                     // ND-sphere radius
  int numberOfRuns,                  // number of times to run the filter
  unsigned int niter[],              // number of iterations
  unsigned long radii[]              // stencil radius
)
{

  typedef float PixelType;
  enum { ImageDimension = VImageDimension };
  typedef itk::Image<PixelType, ImageDimension>                    ImageType;
  typedef itk::ImageRegionIterator<ImageType>                      IteratorType;
  typedef itk::MinMaxCurvatureFlowImageFilter<ImageType,ImageType> DenoiserType;
  typename DenoiserType::Pointer denoiser = DenoiserType::New();

  int j;

  /**
   * Create an image containing a circle/sphere with intensity of 0
   * and background of 255 with added salt and pepper noise.
   */
  double sqrRadius = itk::Math::sqr( radius );  // radius of the circle/sphere
  double fractionNoise = 0.30;              // salt & pepper noise fraction
  PixelType foreground = 0.0;               // intensity value of the foreground
  PixelType background = 255.0;             // intensity value of the background

  std::cout << "Create an image of circle/sphere with noise" << std::endl;
  typename ImageType::Pointer circleImage = ImageType::New();


  typename ImageType::RegionType region;
  region.SetSize( size );

  circleImage->SetLargestPossibleRegion( region );
  circleImage->SetBufferedRegion( region );
  circleImage->Allocate();

  IteratorType circleIter( circleImage, circleImage->GetBufferedRegion() );


  for (; !circleIter.IsAtEnd(); ++circleIter )
    {
    typename ImageType::IndexType index = circleIter.GetIndex();
    float value;

    double lhs = 0.0;
    for ( j = 0; j < ImageDimension; j++ )
      {
      lhs += itk::Math::sqr( (double) index[j] - (double) size[j] * 0.5 );
      }
    if ( lhs < sqrRadius )
      {
      value = foreground;
      }
    else
      {
      value = background;
      }

    if ( vnl_sample_uniform( 0.0, 1.0 ) < fractionNoise )
      {
      value = vnl_sample_uniform( std::min(foreground,background),
        std::max(foreground,background) );
      }

    circleIter.Set( value );

    }

  /**
   * Run MinMaxCurvatureFlowImageFilter several times using the previous
   * output as the input in the next run.
   */

  std::cout << "Run MinMaxCurvatureFlowImageFiler.." << std::endl;

  // set other denoiser parameters here
  denoiser->SetTimeStep( 0.05 );

  // attach a progress watcher to the denoiser
  ShowProgressObject progressWatch(denoiser);
  itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
  command = itk::SimpleMemberCommand<ShowProgressObject>::New();
  command->SetCallbackFunction(&progressWatch,
                               &ShowProgressObject::ShowProgress);
  denoiser->AddObserver( itk::ProgressEvent(), command);


  typename ImageType::Pointer swapPointer = circleImage;

  for ( j = 0; j < numberOfRuns; j++ )
    {

    denoiser->SetInput( swapPointer );

    // set the stencil radius and number of iterations
    denoiser->SetStencilRadius( radii[j] );
    denoiser->SetNumberOfIterations( niter[j] );

    std::cout << " Run: " << j;
    std::cout << " Radius: " << denoiser->GetStencilRadius();
    std::cout << " Iter: " << denoiser->GetNumberOfIterations();
    std::cout << std::endl;

    // run the filter
    denoiser->Update();

    swapPointer = denoiser->GetOutput();
    swapPointer->DisconnectPipeline();
    }


  /**
   * Check the quality of the output by comparing it against a
   * clean image of the circle/sphere.
   * An output pixel is okay if it is within
   * 0.1 * |foreground - background| of the true value.
   * This test is considered as passed if the fraction of wrong
   * pixels is less than the original noise fraction.
   */
  std::cout << "Checking the output..." << std::endl;

  IteratorType outIter( swapPointer,
    swapPointer->GetBufferedRegion() );

  PixelType tolerance = itk::Math::abs( foreground - background ) * 0.1;

  unsigned long numPixelsWrong = 0;

  for (; !outIter.IsAtEnd(); ++outIter )
    {
    typename ImageType::IndexType index = outIter.GetIndex();
    PixelType value = outIter.Get();

    double lhs = 0.0;
    for ( j = 0; j < ImageDimension; j++ )
      {
      lhs += itk::Math::sqr( (double) index[j] - (double) size[j] * 0.5 );
      }
    if ( lhs < sqrRadius )
      {
      if ( itk::Math::abs( foreground - value ) > tolerance )
        {
        numPixelsWrong++;
        }
      }
    else if ( itk::Math::abs( background - value ) > tolerance )
      {
      numPixelsWrong++;
      }
    }

  double fractionWrong = (double) numPixelsWrong /
    (double) region.GetNumberOfPixels();

  std::cout << "Noise reduced from " << fractionNoise << " to ";
  std::cout << fractionWrong << std::endl;

  bool passed = true;
  if ( fractionWrong > fractionNoise )
    {
    passed = false;
    }

  if ( !passed )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }

  /**
   * Exercise other member functions here
   */
  denoiser->Print( std::cout );

 /**
  * Exercise error handling
  */
  typedef itk::CurvatureFlowFunction<ImageType> WrongFunctionType;
  typename WrongFunctionType::Pointer wrongFunction = WrongFunctionType::New();

  passed = false;
  try
    {
    denoiser->SetDifferenceFunction( wrongFunction );
    denoiser->Update();
    }
  catch( itk::ExceptionObject& err )
    {
    passed = true;
    std::cout << "Caught expected exception." << std::endl;
    std::cout << err << std::endl;
    denoiser->ResetPipeline();
    }

  if ( !passed )
    {
    std::cout << "Test failed." << std::endl;
    return EXIT_FAILURE;
    }


  std::cout << "Test passed." << std::endl;
  return EXIT_SUCCESS;

}