1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkFFTConvolutionImageFilter_h
#define itkFFTConvolutionImageFilter_h
#include "itkConvolutionImageFilterBase.h"
#include "itkProgressAccumulator.h"
#include "itkHalfHermitianToRealInverseFFTImageFilter.h"
#include "itkRealToHalfHermitianForwardFFTImageFilter.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"
namespace itk
{
/** \class FFTConvolutionImageFilter
* \brief Convolve a given image with an arbitrary image kernel using
* multiplication in the Fourier domain.
*
* This filter produces output equivalent to the output of the
* ConvolutionImageFilter. However, it takes advantage of the
* convolution theorem to accelerate the convolution computation when
* the kernel is large.
*
* \warning This filter ignores the spacing, origin, and orientation
* of the kernel image and treats them as identical to those in the
* input image.
*
* This code was adapted from the Insight Journal contribution:
*
* "FFT Based Convolution"
* by Gaetan Lehmann
* https://hdl.handle.net/10380/3154
*
* \ingroup ITKConvolution
* \sa ConvolutionImageFilter
*
*/
template< typename TInputImage, typename TKernelImage = TInputImage, typename TOutputImage = TInputImage, typename TInternalPrecision=double >
class ITK_TEMPLATE_EXPORT FFTConvolutionImageFilter :
public ConvolutionImageFilterBase< TInputImage, TKernelImage, TOutputImage >
{
public:
typedef FFTConvolutionImageFilter Self;
typedef ConvolutionImageFilterBase< TInputImage,
TKernelImage,
TOutputImage >
Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information ( and related methods ) */
itkTypeMacro(FFTConvolutionImageFilter, ConvolutionImageFilterBase);
/** Dimensionality of input and output data is assumed to be the same. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
typedef TKernelImage KernelImageType;
typedef typename InputImageType::PixelType InputPixelType;
typedef typename OutputImageType::PixelType OutputPixelType;
typedef typename KernelImageType::PixelType KernelPixelType;
typedef typename InputImageType::IndexType InputIndexType;
typedef typename OutputImageType::IndexType OutputIndexType;
typedef typename KernelImageType::IndexType KernelIndexType;
typedef typename InputImageType::SizeType InputSizeType;
typedef typename OutputImageType::SizeType OutputSizeType;
typedef typename KernelImageType::SizeType KernelSizeType;
typedef typename InputSizeType::SizeValueType SizeValueType;
typedef typename InputImageType::RegionType InputRegionType;
typedef typename OutputImageType::RegionType OutputRegionType;
typedef typename KernelImageType::RegionType KernelRegionType;
/** Internal types used by the FFT filters. */
typedef Image< TInternalPrecision, TInputImage::ImageDimension > InternalImageType;
typedef typename InternalImageType::Pointer InternalImagePointerType;
typedef std::complex< TInternalPrecision > InternalComplexType;
typedef Image< InternalComplexType, TInputImage::ImageDimension > InternalComplexImageType;
typedef typename InternalComplexImageType::Pointer InternalComplexImagePointerType;
/** Typedef to describe the boundary condition. */
typedef typename Superclass::BoundaryConditionType BoundaryConditionType;
typedef typename Superclass::BoundaryConditionPointerType BoundaryConditionPointerType;
itkSetMacro(SizeGreatestPrimeFactor, SizeValueType);
itkGetMacro(SizeGreatestPrimeFactor, SizeValueType);
protected:
FFTConvolutionImageFilter();
~FFTConvolutionImageFilter() ITK_OVERRIDE {}
/** Because the inputs are real, we can use the specialized filters
* for real-to-complex Fourier transforms. */
typedef RealToHalfHermitianForwardFFTImageFilter< InternalImageType,
InternalComplexImageType >
FFTFilterType;
typedef HalfHermitianToRealInverseFFTImageFilter< InternalComplexImageType,
InternalImageType >
IFFTFilterType;
/** FFTConvolutionImageFilter needs the entire image kernel, which in
* general is going to be a different size than the output requested
* region. As such, this filter needs to provide an implementation
* for GenerateInputRequestedRegion() in order to inform the
* pipeline execution model.
*
* \sa ProcessObject::GenerateInputRequestedRegion() */
void GenerateInputRequestedRegion() ITK_OVERRIDE;
/** This filter uses a minipipeline to compute the output. */
void GenerateData() ITK_OVERRIDE;
/** Prepare the input images for operations in the Fourier
* domain. This includes resizing the input and kernel images,
* normalizing the kernel if requested, shifting the kernel, and
* taking the Fourier transform of the padded inputs. */
void PrepareInputs(const InputImageType * input,
const KernelImageType * kernel,
InternalComplexImagePointerType & preparedInput,
InternalComplexImagePointerType & preparedKernel,
ProgressAccumulator * progress, float progressWeight);
/** Prepare the input image. This includes padding the image and
* taking the Fourier transform of the padded image. */
void PrepareInput(const InputImageType * input,
InternalComplexImagePointerType & preparedInput,
ProgressAccumulator * progress, float progressWeight);
/** Pad the input image. */
void PadInput(const InputImageType * input,
InternalImagePointerType & paddedInput,
ProgressAccumulator * progress, float progressWeight);
/** Take the Fourier transform of the padded input. */
void TransformPaddedInput(const InternalImageType * paddedInput,
InternalComplexImagePointerType & transformedInput,
ProgressAccumulator * progress, float progressWeight);
/** Prepare the kernel. This includes resizing the input and kernel
* images, normalizing the kernel if requested, shifting the kernel,
* and taking the Fourier transform of the padded kernel. */
void PrepareKernel(const KernelImageType * kernel,
InternalComplexImagePointerType & preparedKernel,
ProgressAccumulator * progress, float progressWeight);
/** Produce output from the final Fourier domain image. */
void ProduceOutput(InternalComplexImageType * paddedOutput,
ProgressAccumulator * progress,
float progressWeight);
/** Crop the padded version of the output. */
void CropOutput(InternalImageType * paddedOutput,
ProgressAccumulator * progress,
float progressWeight);
/** Get the lower bound for the padding of both the kernel and input
* images. Assuming that the regions of the kernel and input are the
* same, then this lower bound can be used to move the index of the
* padded kernel and padded input so that they are the same. This
* is important to avoid exceptions in filters that operate on these
* images. */
InputSizeType GetPadLowerBound() const;
/** Get the pad size. */
InputSizeType GetPadSize() const;
/** Get whether the X dimension has an odd size. */
bool GetXDimensionIsOdd() const;
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(FFTConvolutionImageFilter);
SizeValueType m_SizeGreatestPrimeFactor;
};
}
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFFTConvolutionImageFilter.hxx"
#endif
#endif
|