File: itkFFTConvolutionImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (203 lines) | stat: -rw-r--r-- 8,989 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkFFTConvolutionImageFilter_h
#define itkFFTConvolutionImageFilter_h

#include "itkConvolutionImageFilterBase.h"

#include "itkProgressAccumulator.h"
#include "itkHalfHermitianToRealInverseFFTImageFilter.h"
#include "itkRealToHalfHermitianForwardFFTImageFilter.h"
#include "itkZeroFluxNeumannBoundaryCondition.h"

namespace itk
{
/** \class FFTConvolutionImageFilter
 * \brief Convolve a given image with an arbitrary image kernel using
 * multiplication in the Fourier domain.
 *
 * This filter produces output equivalent to the output of the
 * ConvolutionImageFilter.  However, it takes advantage of the
 * convolution theorem to accelerate the convolution computation when
 * the kernel is large.
 *
 * \warning This filter ignores the spacing, origin, and orientation
 * of the kernel image and treats them as identical to those in the
 * input image.
 *
 * This code was adapted from the Insight Journal contribution:
 *
 * "FFT Based Convolution"
 * by Gaetan Lehmann
 * https://hdl.handle.net/10380/3154
 *
 * \ingroup ITKConvolution
 * \sa ConvolutionImageFilter
 *
 */
template< typename TInputImage, typename TKernelImage = TInputImage, typename TOutputImage = TInputImage, typename TInternalPrecision=double >
class ITK_TEMPLATE_EXPORT FFTConvolutionImageFilter :
  public ConvolutionImageFilterBase< TInputImage, TKernelImage, TOutputImage >

{
public:
  typedef FFTConvolutionImageFilter                       Self;
  typedef ConvolutionImageFilterBase< TInputImage,
                                      TKernelImage,
                                      TOutputImage >
                                                          Superclass;
  typedef SmartPointer< Self >                            Pointer;
  typedef SmartPointer< const Self >                      ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information ( and related methods ) */
  itkTypeMacro(FFTConvolutionImageFilter, ConvolutionImageFilterBase);

  /** Dimensionality of input and output data is assumed to be the same. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);

  typedef TInputImage                           InputImageType;
  typedef TOutputImage                          OutputImageType;
  typedef TKernelImage                          KernelImageType;
  typedef typename InputImageType::PixelType    InputPixelType;
  typedef typename OutputImageType::PixelType   OutputPixelType;
  typedef typename KernelImageType::PixelType   KernelPixelType;
  typedef typename InputImageType::IndexType    InputIndexType;
  typedef typename OutputImageType::IndexType   OutputIndexType;
  typedef typename KernelImageType::IndexType   KernelIndexType;
  typedef typename InputImageType::SizeType     InputSizeType;
  typedef typename OutputImageType::SizeType    OutputSizeType;
  typedef typename KernelImageType::SizeType    KernelSizeType;
  typedef typename InputSizeType::SizeValueType SizeValueType;
  typedef typename InputImageType::RegionType   InputRegionType;
  typedef typename OutputImageType::RegionType  OutputRegionType;
  typedef typename KernelImageType::RegionType  KernelRegionType;

  /** Internal types used by the FFT filters. */
  typedef Image< TInternalPrecision, TInputImage::ImageDimension >  InternalImageType;
  typedef typename InternalImageType::Pointer                       InternalImagePointerType;
  typedef std::complex< TInternalPrecision >                        InternalComplexType;
  typedef Image< InternalComplexType, TInputImage::ImageDimension > InternalComplexImageType;
  typedef typename InternalComplexImageType::Pointer                InternalComplexImagePointerType;

  /** Typedef to describe the boundary condition. */
  typedef typename Superclass::BoundaryConditionType        BoundaryConditionType;
  typedef typename Superclass::BoundaryConditionPointerType BoundaryConditionPointerType;

  itkSetMacro(SizeGreatestPrimeFactor, SizeValueType);
  itkGetMacro(SizeGreatestPrimeFactor, SizeValueType);

protected:
  FFTConvolutionImageFilter();
  ~FFTConvolutionImageFilter() ITK_OVERRIDE {}

  /** Because the inputs are real, we can use the specialized filters
   * for real-to-complex Fourier transforms. */
  typedef RealToHalfHermitianForwardFFTImageFilter< InternalImageType,
                                                    InternalComplexImageType >
    FFTFilterType;
  typedef HalfHermitianToRealInverseFFTImageFilter< InternalComplexImageType,
                                                    InternalImageType >
    IFFTFilterType;

  /** FFTConvolutionImageFilter needs the entire image kernel, which in
   * general is going to be a different size than the output requested
   * region. As such, this filter needs to provide an implementation
   * for GenerateInputRequestedRegion() in order to inform the
   * pipeline execution model.
   *
   * \sa ProcessObject::GenerateInputRequestedRegion()  */
  void GenerateInputRequestedRegion() ITK_OVERRIDE;

  /** This filter uses a minipipeline to compute the output. */
  void GenerateData() ITK_OVERRIDE;

  /** Prepare the input images for operations in the Fourier
   * domain. This includes resizing the input and kernel images,
   * normalizing the kernel if requested, shifting the kernel, and
   * taking the Fourier transform of the padded inputs. */
  void PrepareInputs(const InputImageType * input,
                     const KernelImageType * kernel,
                     InternalComplexImagePointerType & preparedInput,
                     InternalComplexImagePointerType & preparedKernel,
                     ProgressAccumulator * progress, float progressWeight);

  /** Prepare the input image. This includes padding the image and
   * taking the Fourier transform of the padded image. */
  void PrepareInput(const InputImageType * input,
                    InternalComplexImagePointerType & preparedInput,
                    ProgressAccumulator * progress, float progressWeight);

  /** Pad the input image. */
  void PadInput(const InputImageType * input,
                InternalImagePointerType & paddedInput,
                ProgressAccumulator * progress, float progressWeight);

  /** Take the Fourier transform of the padded input. */
  void TransformPaddedInput(const InternalImageType * paddedInput,
                            InternalComplexImagePointerType & transformedInput,
                            ProgressAccumulator * progress, float progressWeight);

  /** Prepare the kernel. This includes resizing the input and kernel
   * images, normalizing the kernel if requested, shifting the kernel,
   * and taking the Fourier transform of the padded kernel. */
  void PrepareKernel(const KernelImageType * kernel,
                     InternalComplexImagePointerType & preparedKernel,
                     ProgressAccumulator * progress, float progressWeight);

  /** Produce output from the final Fourier domain image. */
  void ProduceOutput(InternalComplexImageType * paddedOutput,
                     ProgressAccumulator * progress,
                     float progressWeight);

  /** Crop the padded version of the output. */
  void CropOutput(InternalImageType * paddedOutput,
                  ProgressAccumulator * progress,
                  float progressWeight);

  /** Get the lower bound for the padding of both the kernel and input
   * images. Assuming that the regions of the kernel and input are the
   * same, then this lower bound can be used to move the index of the
   * padded kernel and padded input so that they are the same. This
   * is important to avoid exceptions in filters that operate on these
   * images. */
  InputSizeType GetPadLowerBound() const;

  /** Get the pad size. */
  InputSizeType GetPadSize() const;

  /** Get whether the X dimension has an odd size. */
  bool GetXDimensionIsOdd() const;

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(FFTConvolutionImageFilter);

  SizeValueType m_SizeGreatestPrimeFactor;
};
}

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkFFTConvolutionImageFilter.hxx"
#endif

#endif