1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkCurvatureFlowImageFilter_h
#define itkCurvatureFlowImageFilter_h
#include "itkDenseFiniteDifferenceImageFilter.h"
#include "itkCurvatureFlowFunction.h"
namespace itk
{
/** \class CurvatureFlowImageFilter
* \brief Denoise an image using curvature driven flow.
*
* CurvatureFlowImageFilter implements a curvature driven image denoising
* algorithm. Iso-brightness contours in the grayscale input image are viewed
* as a level set. The level set is then evolved using a curvature-based speed
* function:
*
* \f[ I_t = \kappa |\nabla I| \f]
* where \f$ \kappa \f$ is the curvature.
*
* The advantage of this approach is that sharp boundaries are preserved
* with smoothing occurring only within a region. However, it should be
* noted that continuous application of this scheme will result in the
* eventual removal of all information as each contour shrinks to zero and
* disappear.
*
* Note that unlike level set segmentation algorithms,
* the image to be denoised is already the level set and can be set
* directly as the input using the SetInput() method.
*
* This filter has two parameters: the number of update iterations to
* be performed and the timestep between each update.
*
* The timestep should be "small enough" to ensure numerical stability.
* Stability is guarantee when the timestep meets the CFL
* (Courant-Friedrichs-Levy) condition. Broadly speaking, this condition
* ensures that each contour does not move more than one grid position
* at each timestep. In the literature, the timestep is typically user
* specified and have to manually tuned to the application.
*
* This filter make use of the multi-threaded finite difference solver
* hierarchy. Updates are computed using a CurvatureFlowFunction object. A
* zero flux Neumann boundary condition when computing derivatives near the
* data boundary.
*
* This filter may be streamed. To support streaming this filter produces a
* padded output which takes into account edge effects. The size of the
* padding is m_NumberOfIterations on each edge. Users of this filter should
* only make use of the center valid central region.
*
* \warning This filter assumes that the input and output types have the
* same dimensions. This filter also requires that the output image pixels
* are of a floating point type. This filter works for any dimensional images.
*
* Reference:
* "Level Set Methods and Fast Marching Methods", J.A. Sethian,
* Cambridge Press, Chapter 16, Second edition, 1999.
*
* \sa DenseFiniteDifferenceImageFilter
* \sa CurvatureFlowFunction
* \sa MinMaxCurvatureFlowImageFilter
* \sa BinaryMinMaxCurvatureFlowImageFilter
*
* \ingroup ImageEnhancement
* \ingroup MultiThreaded
* \ingroup Streamed
*
* Input/Output Restrictions:
* TInputImage and TOutputImage must have the same dimension.
* TOutputImage's pixel type must be a real number type.
* \ingroup ITKCurvatureFlow
*/
template< typename TInputImage, typename TOutputImage >
class ITK_TEMPLATE_EXPORT CurvatureFlowImageFilter:
public DenseFiniteDifferenceImageFilter< TInputImage, TOutputImage >
{
public:
/** Standard class typedefs. */
typedef CurvatureFlowImageFilter Self;
typedef DenseFiniteDifferenceImageFilter< TInputImage, TOutputImage > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information (and related methods). */
itkTypeMacro(CurvatureFlowImageFilter,
DenseFiniteDifferenceImageFilter);
/** InputImage type. */
typedef typename Superclass::InputImageType InputImageType;
/** OutputImage type. */
typedef typename Superclass::OutputImageType OutputImageType;
typedef typename OutputImageType::Pointer OutputImagePointer;
/** FiniteDifferenceFunction type. */
typedef typename Superclass::FiniteDifferenceFunctionType
FiniteDifferenceFunctionType;
/** CurvatureFlowFunction type. */
typedef CurvatureFlowFunction< OutputImageType >
CurvatureFlowFunctionType;
/** Dimensionality of input and output data is assumed to be the same.
* It is inherited from the superclass. */
itkStaticConstMacro(ImageDimension, unsigned int, Superclass::ImageDimension);
/** The pixel type of the output image will be used in computations.
* Inherited from the superclass. */
typedef typename Superclass::PixelType PixelType;
/** The time step type. Inherited from the superclass. */
typedef typename Superclass::TimeStepType TimeStepType;
/** Set the timestep parameter. */
itkSetMacro(TimeStep, TimeStepType);
/** Get the timestep parameter. */
itkGetConstMacro(TimeStep, TimeStepType);
#ifdef ITK_USE_CONCEPT_CHECKING
// Begin concept checking
itkConceptMacro( DoubleConvertibleToOutputCheck,
( Concept::Convertible< double, PixelType > ) );
itkConceptMacro( OutputConvertibleToDoubleCheck,
( Concept::Convertible< PixelType, double > ) );
itkConceptMacro( OutputDivisionOperatorsCheck,
( Concept::DivisionOperators< PixelType > ) );
itkConceptMacro( DoubleOutputMultiplyOperatorCheck,
( Concept::MultiplyOperator< double, PixelType, PixelType > ) );
itkConceptMacro( IntOutputMultiplyOperatorCheck,
( Concept::MultiplyOperator< int, PixelType, PixelType > ) );
itkConceptMacro( OutputLessThanDoubleCheck,
( Concept::LessThanComparable< PixelType, double > ) );
itkConceptMacro( OutputDoubleAdditiveOperatorsCheck,
( Concept::AdditiveOperators< PixelType, double > ) );
// End concept checking
#endif
protected:
CurvatureFlowImageFilter();
~CurvatureFlowImageFilter() ITK_OVERRIDE {}
void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
/** Supplies the halting criteria for this class of filters. The
* algorithm will stop after a user-specified number of iterations. */
virtual bool Halt() ITK_OVERRIDE
{
if ( this->GetElapsedIterations() == this->GetNumberOfIterations() )
{
return true;
}
else
{
return false;
}
}
/** Initialize the state of filter and equation before each iteration.
* Progress feeback is implemented as part of this method. */
virtual void InitializeIteration() ITK_OVERRIDE;
/** To support streaming, this filter produces a output which is
* larger than the original requested region. The output is padding
* by m_NumberOfIterations pixels on edge. */
virtual void EnlargeOutputRequestedRegion(DataObject *) ITK_OVERRIDE;
/** Edge effects are taken care of by padding the output requested
* region. As such, the input requested region needs to at
* minimum the same size as the output requested region. */
virtual void GenerateInputRequestedRegion() ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(CurvatureFlowImageFilter);
TimeStepType m_TimeStep;
};
} // end namspace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkCurvatureFlowImageFilter.hxx"
#endif
#endif
|