1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#include "itkBinaryMinMaxCurvatureFlowImageFilter.h"
#include "itkCommand.h"
#include "vnl/vnl_sample.h"
// The following class is used to support callbacks
// on the filter in the pipeline that follows later
namespace
{class ShowProgressObject
{
public:
ShowProgressObject(itk::ProcessObject* o)
{m_Process = o;}
void ShowProgress()
{std::cout << "Progress " << m_Process->GetProgress() << std::endl;}
itk::ProcessObject::Pointer m_Process;
};
}
#define MAXRUNS 5 // maximum number of runs
template<unsigned int VImageDimension>
int testBinaryMinMaxCurvatureFlow(
itk::Size<VImageDimension> & size,
double threshold,
double radius,
int numberOfRuns,
unsigned int niter[],
unsigned long radii[] );
/**
* This file tests the functionality of the BinaryMinMaxCurvatureFlowImageFilter.
* The test uses a binary image of a circle/sphere with intensity value
* of 0 (black). The background is white ( intensity = 255 ).
* X% salt and pepper noise is added to the the input image. Specifically,
* X% of the pixels is replaced with a value chosen from a uniform
* distribution between 0 and 255.
*
* We then test the ability of BinaryMinMaxCurvatureFlowImageFilter to denoise
* the binary image.
*/
int itkBinaryMinMaxCurvatureFlowImageFilterTest(int, char* [] )
{
double radius;
int numberOfRuns;
unsigned int niter[MAXRUNS];
unsigned long radii[MAXRUNS];
itk::Size<2> size2D;
size2D[0] = 64; size2D[1] = 64;
radius = 20.0;
numberOfRuns = 2;
niter[0] = 100; niter[1] = 100;
radii[0] = 1; radii[1] = 3;
const int err2D = testBinaryMinMaxCurvatureFlow( size2D, 127.5, radius, numberOfRuns,
niter, radii );
if ( err2D )
{
return EXIT_FAILURE;
}
return EXIT_SUCCESS;
}
template<unsigned int VImageDimension>
int testBinaryMinMaxCurvatureFlow(
itk::Size<VImageDimension> & size, // ND image size
double threshold,
double radius, // ND-sphere radius
int numberOfRuns, // number of times to run the filter
unsigned int niter[], // number of iterations
unsigned long radii[] // stencil radius
)
{
typedef float PixelType;
enum { ImageDimension = VImageDimension };
typedef itk::Image<PixelType, ImageDimension> ImageType;
typedef itk::ImageRegionIterator<ImageType> IteratorType;
typedef itk::BinaryMinMaxCurvatureFlowImageFilter<ImageType,ImageType> DenoiserType;
typename DenoiserType::Pointer denoiser = DenoiserType::New();
int j;
/**
* Create an image containing a circle/sphere with intensity of 0
* and background of 255 with added salt and pepper noise.
*/
double sqrRadius = itk::Math::sqr( radius ); // radius of the circle/sphere
double fractionNoise = 0.30; // salt & pepper noise fraction
PixelType foreground = 0.0; // intensity value of the foreground
PixelType background = 255.0; // intensity value of the background
std::cout << "Create an image of circle/sphere with noise" << std::endl;
typename ImageType::Pointer circleImage = ImageType::New();
typename ImageType::RegionType region;
region.SetSize( size );
circleImage->SetLargestPossibleRegion( region );
circleImage->SetBufferedRegion( region );
circleImage->Allocate();
for ( IteratorType circleIter( circleImage, circleImage->GetBufferedRegion() );
!circleIter.IsAtEnd(); ++circleIter )
{
typename ImageType::IndexType index = circleIter.GetIndex();
float value;
double lhs = 0.0;
for ( j = 0; j < ImageDimension; j++ )
{
lhs += itk::Math::sqr( (double) index[j] - (double) size[j] * 0.5 );
}
if ( lhs < sqrRadius )
{
value = foreground;
}
else
{
value = background;
}
if ( vnl_sample_uniform( 0.0, 1.0 ) < fractionNoise )
{
value = vnl_sample_uniform( std::min(foreground,background),
std::max(foreground,background) );
}
circleIter.Set( value );
}
/**
* Run MinMaxCurvatureFlowImageFilter several times using the previous
* output as the input in the next run.
*/
std::cout << "Run BinaryMinMaxCurvatureFlowImageFiler.." << std::endl;
// set other denoiser parameters here
denoiser->SetTimeStep( 0.05 );
denoiser->SetThreshold( threshold );
// attach a progress watcher to the denoiser
ShowProgressObject progressWatch(denoiser);
itk::SimpleMemberCommand<ShowProgressObject>::Pointer command;
command = itk::SimpleMemberCommand<ShowProgressObject>::New();
command->SetCallbackFunction(&progressWatch,
&ShowProgressObject::ShowProgress);
denoiser->AddObserver( itk::ProgressEvent(), command);
typename ImageType::Pointer swapPointer = circleImage;
for ( j = 0; j < numberOfRuns; j++ )
{
denoiser->SetInput( swapPointer );
// set the stencil radius and number of iterations
denoiser->SetStencilRadius( radii[j] );
denoiser->SetNumberOfIterations( niter[j] );
std::cout << " Run: " << j;
std::cout << " Radius: " << denoiser->GetStencilRadius();
std::cout << " Iter: " << denoiser->GetNumberOfIterations();
std::cout << std::endl;
// run the filter
denoiser->Update();
swapPointer = denoiser->GetOutput();
swapPointer->DisconnectPipeline();
}
/**
* Check the quality of the output by comparing it against a
* clean image of the circle/sphere.
* An output pixel is okay if it is within
* 0.1 * |foreground - background| of the true value.
* This test is considered as passed if the fraction of wrong
* pixels is less than the original noise fraction.
*/
std::cout << "Checking the output..." << std::endl;
const PixelType tolerance = itk::Math::abs( foreground - background ) * 0.1;
unsigned long numPixelsWrong = 0;
for (IteratorType outIter( swapPointer, swapPointer->GetBufferedRegion() );
!outIter.IsAtEnd(); ++outIter )
{
typename ImageType::IndexType index = outIter.GetIndex();
PixelType value = outIter.Get();
double lhs = 0.0;
for ( j = 0; j < ImageDimension; j++ )
{
lhs += itk::Math::sqr( (double) index[j] - (double) size[j] * 0.5 );
}
if ( lhs < sqrRadius )
{
if ( itk::Math::abs( foreground - value ) > tolerance )
{
numPixelsWrong++;
}
}
else if ( itk::Math::abs( background - value ) > tolerance )
{
numPixelsWrong++;
}
}
const double fractionWrong = (double) numPixelsWrong /
(double) region.GetNumberOfPixels();
std::cout << "Noise reduced from " << fractionNoise << " to ";
std::cout << fractionWrong << std::endl;
bool passed = true;
if ( fractionWrong > fractionNoise )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
/**
* Exercise other member functions here
*/
denoiser->Print( std::cout );
std::cout << "GetThreshold: " << denoiser->GetThreshold() << std::endl;
/**
* Exercise error handling
*/
typedef itk::CurvatureFlowFunction<ImageType> WrongFunctionType;
typename WrongFunctionType::Pointer wrongFunction = WrongFunctionType::New();
passed = false;
try
{
denoiser->SetDifferenceFunction( wrongFunction );
denoiser->Update();
}
catch( itk::ExceptionObject& err )
{
passed = true;
std::cout << "Caught expected exception." << std::endl;
std::cout << err << std::endl;
}
if ( !passed )
{
std::cout << "Test failed." << std::endl;
return EXIT_FAILURE;
}
std::cout << "Test passed." << std::endl;
return EXIT_SUCCESS;
}
|