File: itkInverseDeconvolutionImageFilter.h

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (171 lines) | stat: -rw-r--r-- 6,812 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkInverseDeconvolutionImageFilter_h
#define itkInverseDeconvolutionImageFilter_h

#include "itkFFTConvolutionImageFilter.h"

namespace itk
{
/** \class InverseDeconvolutionImageFilter
 * \brief The direct linear inverse deconvolution filter.
 *
 * The inverse filter is the most straightforward deconvolution
 * method. Considering that convolution of two images in the spatial domain is
 * equivalent to multiplying the Fourier transform of the two images,
 * the inverse filter consists of inverting the multiplication. In
 * other words, this filter computes the following:
 * \f[ hat{F}(\omega) =
 *       \begin{cases}
 *         G(\omega) / H(\omega) & \text{if $|H(\omega)| \geq \epsilon$} \\
 *         0                     & \text{otherwise}
 *       \end{cases}
 * \f]
 * where \f$\hat{F}(\omega)\f$ is the Fourier transform of the
 * estimate produced by this filter, \f$G(\omega)\f$ is the Fourier
 * transform of the input blurred image, \f$H(\omega)\f$ is the
 * Fourier transform of the blurring kernel, and \f$\epsilon\f$ is a
 * constant real non-negative threshold (called
 * KernelZeroMagnitudeThreshold in this filter) that determines when
 * the magnitude of a complex number is considered zero.
 *
 * \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
 * \author Cory Quammen, The University of North Carolina at Chapel Hill
 *
 * \ingroup ITKDeconvolution
 *
 */
template< typename TInputImage, typename TKernelImage = TInputImage, typename TOutputImage = TInputImage, typename TInternalPrecision=double >
class ITK_TEMPLATE_EXPORT InverseDeconvolutionImageFilter :
  public FFTConvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
{
public:
  typedef InverseDeconvolutionImageFilter                 Self;
  typedef FFTConvolutionImageFilter< TInputImage,
                                     TKernelImage,
                                     TOutputImage,
                                     TInternalPrecision > Superclass;
  typedef SmartPointer< Self >                            Pointer;
  typedef SmartPointer< const Self >                      ConstPointer;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

  /** Run-time type information ( and related methods ) */
  itkTypeMacro(InverseDeconvolutionImageFilter, FFTConvolutionImageFilter);

  /** Dimensionality of input and output data is assumed to be the same. */
  itkStaticConstMacro(ImageDimension, unsigned int,
                      TInputImage::ImageDimension);

  typedef TInputImage                           InputImageType;
  typedef TOutputImage                          OutputImageType;
  typedef TKernelImage                          KernelImageType;
  typedef typename Superclass::InputPixelType   InputPixelType;
  typedef typename Superclass::OutputPixelType  OutputPixelType;
  typedef typename Superclass::KernelPixelType  KernelPixelType;
  typedef typename Superclass::InputIndexType   InputIndexType;
  typedef typename Superclass::OutputIndexType  OutputIndexType;
  typedef typename Superclass::KernelIndexType  KernelIndexType;
  typedef typename Superclass::InputSizeType    InputSizeType;
  typedef typename Superclass::OutputSizeType   OutputSizeType;
  typedef typename Superclass::KernelSizeType   KernelSizeType;
  typedef typename Superclass::SizeValueType    SizeValueType;
  typedef typename Superclass::InputRegionType  InputRegionType;
  typedef typename Superclass::OutputRegionType OutputRegionType;
  typedef typename Superclass::KernelRegionType KernelRegionType;

  /** Internal image types. */
  typedef typename Superclass::InternalImageType               InternalImageType;
  typedef typename Superclass::InternalImagePointerType        InternalImagePointerType;
  typedef typename Superclass::InternalComplexType             InternalComplexType;
  typedef typename Superclass::InternalComplexImageType        InternalComplexImageType;
  typedef typename Superclass::InternalComplexImagePointerType InternalComplexImagePointerType;

  /** Set/get the threshold value uused to determine whether a
  * frequency of the Fourier transform of the blurring kernel is
  * considered to be zero. Default value is 1.0e-4. */
  itkSetMacro(KernelZeroMagnitudeThreshold, double);
  itkGetConstMacro(KernelZeroMagnitudeThreshold, double);

protected:
  InverseDeconvolutionImageFilter();
  ~InverseDeconvolutionImageFilter() ITK_OVERRIDE {}

  /** This filter uses a minipipeline to compute the output. */
  virtual void GenerateData() ITK_OVERRIDE;

  virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(InverseDeconvolutionImageFilter);

  double m_KernelZeroMagnitudeThreshold;
};

namespace Functor
{
template< typename TInput1, typename TInput2, typename TOutput >
class ITK_TEMPLATE_EXPORT InverseDeconvolutionFunctor
{
public:
  InverseDeconvolutionFunctor() { m_KernelZeroMagnitudeThreshold = 0.0; }
  ~InverseDeconvolutionFunctor() {}

  bool operator!=( const InverseDeconvolutionFunctor & ) const
  {
    return false;
  }
  bool operator==( const InverseDeconvolutionFunctor & other) const
  {
    return !(*this != other);
  }
  inline TOutput operator()(const TInput1 & I, const TInput2 & H) const
  {
    const double absH = std::abs( H );
    TOutput value = NumericTraits< TOutput >::ZeroValue();
    if ( absH >= m_KernelZeroMagnitudeThreshold )
      {
      value = static_cast< TOutput >( I / H );
      }
    return value;
  }

  /** Set/get the threshold value below which complex magnitudes are considered
   * to be zero. */
  void SetKernelZeroMagnitudeThreshold(double mu)
  {
    m_KernelZeroMagnitudeThreshold = mu;
  }
  double GetKernelZeroMagnitudeThreshold() const
  {
    return m_KernelZeroMagnitudeThreshold;
  }

private:
   double m_KernelZeroMagnitudeThreshold;
};
} //namespace Functor

}

#ifndef ITK_MANUAL_INSTANTIATION
#include "itkInverseDeconvolutionImageFilter.hxx"
#endif

#endif