1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkInverseDeconvolutionImageFilter_h
#define itkInverseDeconvolutionImageFilter_h
#include "itkFFTConvolutionImageFilter.h"
namespace itk
{
/** \class InverseDeconvolutionImageFilter
* \brief The direct linear inverse deconvolution filter.
*
* The inverse filter is the most straightforward deconvolution
* method. Considering that convolution of two images in the spatial domain is
* equivalent to multiplying the Fourier transform of the two images,
* the inverse filter consists of inverting the multiplication. In
* other words, this filter computes the following:
* \f[ hat{F}(\omega) =
* \begin{cases}
* G(\omega) / H(\omega) & \text{if $|H(\omega)| \geq \epsilon$} \\
* 0 & \text{otherwise}
* \end{cases}
* \f]
* where \f$\hat{F}(\omega)\f$ is the Fourier transform of the
* estimate produced by this filter, \f$G(\omega)\f$ is the Fourier
* transform of the input blurred image, \f$H(\omega)\f$ is the
* Fourier transform of the blurring kernel, and \f$\epsilon\f$ is a
* constant real non-negative threshold (called
* KernelZeroMagnitudeThreshold in this filter) that determines when
* the magnitude of a complex number is considered zero.
*
* \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
* \author Cory Quammen, The University of North Carolina at Chapel Hill
*
* \ingroup ITKDeconvolution
*
*/
template< typename TInputImage, typename TKernelImage = TInputImage, typename TOutputImage = TInputImage, typename TInternalPrecision=double >
class ITK_TEMPLATE_EXPORT InverseDeconvolutionImageFilter :
public FFTConvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
{
public:
typedef InverseDeconvolutionImageFilter Self;
typedef FFTConvolutionImageFilter< TInputImage,
TKernelImage,
TOutputImage,
TInternalPrecision > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Run-time type information ( and related methods ) */
itkTypeMacro(InverseDeconvolutionImageFilter, FFTConvolutionImageFilter);
/** Dimensionality of input and output data is assumed to be the same. */
itkStaticConstMacro(ImageDimension, unsigned int,
TInputImage::ImageDimension);
typedef TInputImage InputImageType;
typedef TOutputImage OutputImageType;
typedef TKernelImage KernelImageType;
typedef typename Superclass::InputPixelType InputPixelType;
typedef typename Superclass::OutputPixelType OutputPixelType;
typedef typename Superclass::KernelPixelType KernelPixelType;
typedef typename Superclass::InputIndexType InputIndexType;
typedef typename Superclass::OutputIndexType OutputIndexType;
typedef typename Superclass::KernelIndexType KernelIndexType;
typedef typename Superclass::InputSizeType InputSizeType;
typedef typename Superclass::OutputSizeType OutputSizeType;
typedef typename Superclass::KernelSizeType KernelSizeType;
typedef typename Superclass::SizeValueType SizeValueType;
typedef typename Superclass::InputRegionType InputRegionType;
typedef typename Superclass::OutputRegionType OutputRegionType;
typedef typename Superclass::KernelRegionType KernelRegionType;
/** Internal image types. */
typedef typename Superclass::InternalImageType InternalImageType;
typedef typename Superclass::InternalImagePointerType InternalImagePointerType;
typedef typename Superclass::InternalComplexType InternalComplexType;
typedef typename Superclass::InternalComplexImageType InternalComplexImageType;
typedef typename Superclass::InternalComplexImagePointerType InternalComplexImagePointerType;
/** Set/get the threshold value uused to determine whether a
* frequency of the Fourier transform of the blurring kernel is
* considered to be zero. Default value is 1.0e-4. */
itkSetMacro(KernelZeroMagnitudeThreshold, double);
itkGetConstMacro(KernelZeroMagnitudeThreshold, double);
protected:
InverseDeconvolutionImageFilter();
~InverseDeconvolutionImageFilter() ITK_OVERRIDE {}
/** This filter uses a minipipeline to compute the output. */
virtual void GenerateData() ITK_OVERRIDE;
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(InverseDeconvolutionImageFilter);
double m_KernelZeroMagnitudeThreshold;
};
namespace Functor
{
template< typename TInput1, typename TInput2, typename TOutput >
class ITK_TEMPLATE_EXPORT InverseDeconvolutionFunctor
{
public:
InverseDeconvolutionFunctor() { m_KernelZeroMagnitudeThreshold = 0.0; }
~InverseDeconvolutionFunctor() {}
bool operator!=( const InverseDeconvolutionFunctor & ) const
{
return false;
}
bool operator==( const InverseDeconvolutionFunctor & other) const
{
return !(*this != other);
}
inline TOutput operator()(const TInput1 & I, const TInput2 & H) const
{
const double absH = std::abs( H );
TOutput value = NumericTraits< TOutput >::ZeroValue();
if ( absH >= m_KernelZeroMagnitudeThreshold )
{
value = static_cast< TOutput >( I / H );
}
return value;
}
/** Set/get the threshold value below which complex magnitudes are considered
* to be zero. */
void SetKernelZeroMagnitudeThreshold(double mu)
{
m_KernelZeroMagnitudeThreshold = mu;
}
double GetKernelZeroMagnitudeThreshold() const
{
return m_KernelZeroMagnitudeThreshold;
}
private:
double m_KernelZeroMagnitudeThreshold;
};
} //namespace Functor
}
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkInverseDeconvolutionImageFilter.hxx"
#endif
#endif
|