File: itkIterativeDeconvolutionImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (160 lines) | stat: -rw-r--r-- 6,047 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkIterativeDeconvolutionImageFilter_hxx
#define itkIterativeDeconvolutionImageFilter_hxx

#include "itkCastImageFilter.h"
#include "itkIterativeDeconvolutionImageFilter.h"

namespace itk
{

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::IterativeDeconvolutionImageFilter()
{
  m_NumberOfIterations = 1;
  m_Iteration = 0;
  m_StopIteration = false;
  m_TransferFunction = ITK_NULLPTR;
  m_CurrentEstimate = ITK_NULLPTR;
  m_InputMTime = 0L;
  m_KernelMTime = 0L;
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::~IterativeDeconvolutionImageFilter()
{
  m_TransferFunction = ITK_NULLPTR;
  m_CurrentEstimate = ITK_NULLPTR;
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
void
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::Initialize(ProgressAccumulator * progress, float progressWeight,
             float itkNotUsed(iterationProgressWeight))
{
  // Generate an estimate if there is none or if the input has changed.
  if ( !this->m_CurrentEstimate ||
       m_InputMTime != this->GetInput()->GetMTime() )
    {
    this->PadInput( this->GetInput(), m_CurrentEstimate, progress,
                    0.5f * progressWeight );
    m_CurrentEstimate->DisconnectPipeline();

    m_InputMTime = this->GetInput()->GetMTime();
    }

  // Generate the transfer function if there is none or if the kernel
  // input has changed.
  if ( !this->m_TransferFunction ||
       m_KernelMTime != this->GetKernelImage()->GetMTime() )
    {
    this->PrepareKernel( this->GetKernelImage(), m_TransferFunction,
                         progress, 0.5f * progressWeight );
    m_TransferFunction->DisconnectPipeline();

    m_KernelMTime = this->GetKernelImage()->GetMTime();
    }
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
void
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::Finish(ProgressAccumulator * progress, float progressWeight)
{
  this->CropOutput( m_CurrentEstimate, progress, progressWeight );

  m_CurrentEstimate = ITK_NULLPTR;
  m_TransferFunction = ITK_NULLPTR;
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
void
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::GenerateInputRequestedRegion()
{
  // Request the largest possible region for both input images.
  if ( this->GetInput() )
    {
    typename InputImageType::Pointer imagePtr =
      const_cast< InputImageType * >( this->GetInput() );
    imagePtr->SetRequestedRegionToLargestPossibleRegion();
    }

  if ( this->GetKernelImage() )
    {
    // Input kernel is an image, cast away the constness so we can set
    // the requested region.
    typename KernelImageType::Pointer kernelPtr =
      const_cast< KernelImageType * >( this->GetKernelImage() );
    kernelPtr->SetRequestedRegionToLargestPossibleRegion();
    }
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
void
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::GenerateData()
{
  // Create a process accumulator for tracking the progress of this minipipeline
  ProgressAccumulator::Pointer progress = ProgressAccumulator::New();
  progress->SetMiniPipelineFilter( this );

  typename Superclass::InputImageConstPointer inputPtr = this->GetInput();
  typename Superclass::OutputImagePointer outputPtr = this->GetOutput(0);

  outputPtr->SetRequestedRegion( inputPtr->GetRequestedRegion() );
  outputPtr->SetBufferedRegion( inputPtr->GetBufferedRegion() );
  outputPtr->SetLargestPossibleRegion( inputPtr->GetLargestPossibleRegion() );
  outputPtr->Allocate();

  // Set up progress tracking
  float iterationWeight = 0.8f / static_cast< float >( m_NumberOfIterations );
  this->Initialize( progress, 0.1f, iterationWeight );

  for ( m_Iteration = 0; m_Iteration < m_NumberOfIterations; ++m_Iteration )
    {
    this->InvokeEvent( IterationEvent() );
    if ( m_StopIteration ) break;

    this->Iteration( progress, iterationWeight );
    }

  this->Finish(progress, 0.1f);
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage, typename TInternalPrecision >
void
IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
::PrintSelf(std::ostream & os, Indent indent) const
{
  this->Superclass::PrintSelf( os, indent );

  os << indent << "NumberOfIterations: " << m_NumberOfIterations << std::endl;
  os << indent << "Iteration: " << m_Iteration << std::endl;
  os << indent << "StopIteration: " << m_StopIteration << std::endl;
  os << indent << "InputMTime: " << m_InputMTime << std::endl;
  os << indent << "KernelMTime: " << m_KernelMTime << std::endl;
}

} // end namespace itk

#endif