1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182
|
/*=========================================================================
*
* Copyright Insight Software Consortium
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0.txt
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*=========================================================================*/
#ifndef itkLandweberDeconvolutionImageFilter_h
#define itkLandweberDeconvolutionImageFilter_h
#include "itkIterativeDeconvolutionImageFilter.h"
#include "itkComplexConjugateImageAdaptor.h"
#include "itkTernaryFunctorImageFilter.h"
namespace itk
{
namespace Functor
{
/** \class LandweberMethod
* \brief Functor class for computing a Landweber iteration.
* \ingroup ITKDeconvolution
*/
template< typename TInput1, typename TInput2, typename TInput3, typename TOutput >
class ITK_TEMPLATE_EXPORT LandweberMethod
{
public:
LandweberMethod() {}
~LandweberMethod() {}
bool operator!=(const LandweberMethod &) const
{
return false;
}
bool operator==(const LandweberMethod & other) const
{
return !( *this != other );
}
inline TOutput operator()(const TInput1 & estimateFT,
const TInput2 & kernelFT,
const TInput2 & inputFT) const
{
return m_Alpha * std::conj( kernelFT ) * inputFT +
( NumericTraits< typename TInput1::value_type >::OneValue() - m_Alpha * std::norm( kernelFT ) ) * estimateFT;
}
typename TInput1::value_type m_Alpha;
};
} // end namespace Functor
/** \class LandweberDeconvolutionImageFilter
* \brief Deconvolve an image using the Landweber deconvolution
* algorithm.
*
* This filter implements the Landweber deconvolution algorthm as
* defined in Bertero M and Boccacci P, "Introduction to Inverse
* Problems in Imaging", 1998. The algorithm assumes that the input
* image has been formed by a linear shift-invariant system with a
* known kernel.
*
* The Landweber algorithm converges to a solution that minimizes the
* sum of squared errors \f$||f \otimes h - g||\f$ where \f$f\f$ is
* the estimate of the unblurred image, \f$\otimes\f$ is the
* convolution operator, \f$h\f$ is the blurring kernel, and \f$g\f$ is
* the blurred input image. As such, it is best suited for images that
* have zero-mean Gaussian white noise.
*
* This is the base implementation of the Landweber algorithm. It may
* produce results with negative values. For a version of this
* algorithm that enforces a positivity constraint on each
* intermediate solution, see ProjectedLandweberDeconvolutionImageFilter.
*
* This code was adapted from the Insight Journal contribution:
*
* "Deconvolution: infrastructure and reference algorithms"
* by Gaetan Lehmann
* https://hdl.handle.net/10380/3207
*
* \author Gaetan Lehmann, Biologie du Developpement et de la Reproduction, INRA de Jouy-en-Josas, France
* \author Cory Quammen, The University of North Carolina at Chapel Hill
*
* \ingroup ITKDeconvolution
* \sa IterativeDeconvolutionImageFilter
* \sa RichardsonLucyDeconvolutionImageFilter
* \sa ProjectedLandweberDeconvolutionImageFilter
*/
template< typename TInputImage, typename TKernelImage=TInputImage, typename TOutputImage=TInputImage, typename TInternalPrecision=double >
class ITK_TEMPLATE_EXPORT LandweberDeconvolutionImageFilter :
public IterativeDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage, TInternalPrecision >
{
public:
/** Standard typedefs. */
typedef LandweberDeconvolutionImageFilter Self;
typedef IterativeDeconvolutionImageFilter< TInputImage,
TKernelImage,
TOutputImage,
TInternalPrecision > Superclass;
typedef SmartPointer< Self > Pointer;
typedef SmartPointer< const Self > ConstPointer;
/** Other useful typedefs. */
typedef TInputImage InputImageType;
typedef TKernelImage KernelImageType;
typedef TOutputImage OutputImageType;
/** Internal types used by the FFT filters. */
typedef typename Superclass::InternalImageType InternalImageType;
typedef typename Superclass::InternalImagePointerType InternalImagePointerType;
typedef typename Superclass::InternalComplexType InternalComplexType;
typedef typename Superclass::InternalComplexImageType InternalComplexImageType;
typedef typename Superclass::InternalComplexImagePointerType InternalComplexImagePointerType;
/** Method for creation through the object factory. */
itkNewMacro(Self);
/** Runtime information support. */
itkTypeMacro(LandweberDeconvolutionImageFilter,
IterativeDeconvolutionImageFilter);
/** Set/get relaxation factor. */
itkSetMacro(Alpha, double);
itkGetMacro(Alpha, double);
protected:
LandweberDeconvolutionImageFilter();
virtual ~LandweberDeconvolutionImageFilter() ITK_OVERRIDE;
virtual void Initialize(ProgressAccumulator * progress,
float progressWeight,
float iterationProgressWeight) ITK_OVERRIDE;
virtual void Iteration(ProgressAccumulator * progress,
float iterationProgressWeight) ITK_OVERRIDE;
virtual void Finish(ProgressAccumulator *progress, float progressWeight) ITK_OVERRIDE;
typedef typename Superclass::FFTFilterType FFTFilterType;
typedef typename Superclass::IFFTFilterType IFFTFilterType;
virtual void PrintSelf(std::ostream & os, Indent indent) const ITK_OVERRIDE;
private:
ITK_DISALLOW_COPY_AND_ASSIGN(LandweberDeconvolutionImageFilter);
double m_Alpha;
InternalComplexImagePointerType m_TransformedInput;
typedef Functor::LandweberMethod< InternalComplexType,
InternalComplexType,
InternalComplexType,
InternalComplexType > LandweberFunctor;
typedef TernaryFunctorImageFilter< InternalComplexImageType,
InternalComplexImageType,
InternalComplexImageType,
InternalComplexImageType,
LandweberFunctor > LandweberFilterType;
typename LandweberFilterType::Pointer m_LandweberFilter;
typename IFFTFilterType::Pointer m_IFFTFilter;
};
} // end namespace itk
#ifndef ITK_MANUAL_INSTANTIATION
#include "itkLandweberDeconvolutionImageFilter.hxx"
#endif
#endif
|