File: itkParametricBlindLeastSquaresDeconvolutionImageFilter.hxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (288 lines) | stat: -rw-r--r-- 12,268 bytes parent folder | download | duplicates (5)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/
#ifndef itkParametricBlindLeastSquaresDeconvolutionImageFilter_hxx
#define itkParametricBlindLeastSquaresDeconvolutionImageFilter_hxx

#include "itkParametricBlindLeastSquaresDeconvolutionImageFilter.h"

#include "itkComplexConjugateImageAdaptor.h"
#include "itkImageDuplicator.h"
#include "itkHalfHermitianToRealInverseFFTImageFilter.h"

namespace itk
{

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::ParametricBlindLeastSquaresDeconvolutionImageFilter()
{
  m_Alpha = 0.01;
  m_Beta  = 0.01;
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::~ParametricBlindLeastSquaresDeconvolutionImageFilter()
{
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
void
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::SetKernelSource(KernelSourceType * kernelSource)
{
  itkDebugMacro("setting KernelSource to " << kernelSource);
  if ( this->m_KernelSource != kernelSource )
    {
    this->m_KernelSource = kernelSource;
    this->Modified();
    }
  m_KernelSource = kernelSource;

  // The kernel image isn't needed until the Initialize() method.
  // However, it needs to be set here to avoid triggering an exception
  // in the itk::ProcessObject::VerifyPreconditions() method.
  this->SetKernelImage( m_KernelSource->GetOutput() );
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
void
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::Initialize(ProgressAccumulator * progress, float progressWeight,
             float iterationProgressWeight)
{
  // Set the kernel, needed by the class to pad the input properly
  m_KernelSource->Update();
  this->SetKernelImage( m_KernelSource->GetOutput() );

  this->Superclass::Initialize( progress, 0.5f * progressWeight,
                                iterationProgressWeight );

  this->PrepareInput( this->GetInput(), m_TransformedInput, progress,
                      0.5f * progressWeight );

  typedef ImageDuplicator< InternalComplexImageType > DuplicatorType;
  typename DuplicatorType::Pointer duplicator = DuplicatorType::New();
  duplicator->SetInputImage( m_TransformedInput );
  duplicator->Update();
  m_TransformedCurrentEstimate = duplicator->GetModifiableOutput();
  m_TransformedCurrentEstimate->DisconnectPipeline();

  // Computes the difference between convolution of estimate with
  // parametric kernel at the current kernel parameters
  m_DifferenceFilter = DifferenceFilterType::New();
  // Transform of current estimate will be set as input 1 and
  // transform of current kernel estimate will be set as input 2 in
  // Iteration()
  m_DifferenceFilter->SetInput3( m_TransformedInput );

  // Computes the updated image estimate
  m_ImageUpdateFilter = ImageUpdateFilterType::New();

}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
void
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::Iteration(ProgressAccumulator * progress, float /*iterationProgressWeight*/)
{
  // Compute the new padded, shifted, and transformed kernel
  m_KernelSource->UpdateLargestPossibleRegion();
  InternalComplexImagePointerType preparedKernel = ITK_NULLPTR;
  this->PrepareKernel( m_KernelSource->GetOutput(), preparedKernel, progress, 0.0 );

  m_DifferenceFilter->SetInput1( m_TransformedCurrentEstimate );
  m_DifferenceFilter->SetInput2( preparedKernel );
  m_DifferenceFilter->SetInput3( m_TransformedInput );
  m_DifferenceFilter->UpdateLargestPossibleRegion();

  // Compute and apply the update to the current estimate. The update
  // is found by convolving the difference with the flipped
  // kernel. Equivalently, in the Fourier domain, the update is found
  // by multiplying the difference with the conjugate of the current
  // kernel.
  m_ImageUpdateFilter->SetInput1( m_TransformedCurrentEstimate );
  m_ImageUpdateFilter->SetInput2( m_DifferenceFilter->GetOutput() );
  m_ImageUpdateFilter->SetInput3( preparedKernel );
  m_ImageUpdateFilter->GetFunctor().SetAlpha( m_Alpha );
  m_ImageUpdateFilter->UpdateLargestPossibleRegion();

  m_TransformedCurrentEstimate = m_ImageUpdateFilter->GetOutput();
  m_TransformedCurrentEstimate->DisconnectPipeline();

  // Compute the convolution of the difference with the flipped and
  // normalized version of the current image estimate
  typedef HalfHermitianToRealInverseFFTImageFilter< InternalComplexImageType,
                                                    InternalImageType >
    InverseFFTFilterType;
  typename InverseFFTFilterType::Pointer ifft = InverseFFTFilterType::New();
  ifft->SetActualXDimensionIsOdd( this->GetXDimensionIsOdd() );
  ifft->SetInput( m_TransformedCurrentEstimate );
  ifft->UpdateLargestPossibleRegion();

  // Shift the image by negative one half the input size in each
  // dimension
  typedef CyclicShiftImageFilter< InternalImageType > EstimateShiftFilterType;
  typename EstimateShiftFilterType::Pointer estimateShifter =
    EstimateShiftFilterType::New();
  typename EstimateShiftFilterType::OffsetType shift;
  typename InternalImageType::SizeType inputSize =
    this->GetInput()->GetLargestPossibleRegion().GetSize();
  for (unsigned int i = 0; i < InternalImageType::ImageDimension; ++i)
    {
    shift[i] = -(static_cast< typename EstimateShiftFilterType::OffsetValueType >( inputSize[i] ) / 2);
    }

  estimateShifter->SetShift( shift );
  estimateShifter->SetInput( ifft->GetOutput() );

  // Normalize the image so that it sums to 1
  typedef NormalizeToConstantImageFilter< InternalImageType, InternalImageType >
    NormalizeEstimateFilterType;
  typename NormalizeEstimateFilterType::Pointer normalizer =
    NormalizeEstimateFilterType::New();
  normalizer->SetConstant( 1.0 );
  normalizer->SetInput( estimateShifter->GetOutput() );

  // Take the DFT of the shifted image
  typedef RealToHalfHermitianForwardFFTImageFilter< InternalImageType,
                                                    InternalComplexImageType >
    ForwardFFTFilterType;
  typename ForwardFFTFilterType::Pointer fft = ForwardFFTFilterType::New();
  fft->SetInput( normalizer->GetOutput() );
  fft->UpdateLargestPossibleRegion();

  typedef ComplexConjugateImageAdaptor< InternalComplexImageType > ComplexAdaptorType;
  typename ComplexAdaptorType::Pointer complexAdaptor = ComplexAdaptorType::New();
  complexAdaptor->SetImage( fft->GetOutput() );

  // Now we can compute the Jacobian (the derivative of the least-squares
  // objective function with respect to the kernel image intensity
  // changes) in preparation for computing the derivative of the
  // objective function with respect to the parameters of the
  // parametric kernel
  typedef MultiplyImageFilter< InternalComplexImageType, ComplexAdaptorType > MultiplyFilterType;
  typename MultiplyFilterType::Pointer multiplier = MultiplyFilterType::New();
  multiplier->SetInput1( m_DifferenceFilter->GetOutput() );
  multiplier->SetInput2( complexAdaptor );

  // Compute the inverse DFT of the result to get the Jacobian
  typename InverseFFTFilterType::Pointer jacobianIFFT = InverseFFTFilterType::New();
  jacobianIFFT->SetInput( multiplier->GetOutput() );
  jacobianIFFT->SetActualXDimensionIsOdd( this->GetXDimensionIsOdd() );
  jacobianIFFT->UpdateLargestPossibleRegion();

  // Now compute the partial derivative images of the kernel using
  // finite differences.
  typename KernelSourceType::ParametersType parameters =
    m_KernelSource->GetParameters();
  std::vector< double > gradient( parameters.Size() );

  for (unsigned int i = 0; i < parameters.Size(); ++i)
    {
    typedef typename KernelSourceType::OutputImageType InternalKernelImageType;
    typedef typename InternalKernelImageType::Pointer  InternalKernelImagePointer;
    typename KernelSourceType::ParametersValueType theta = parameters[i];
    double deltaTheta = 0.0001;
    double thetaPlus  = theta + deltaTheta;
    double thetaMinus = theta - deltaTheta;

    // Generate the plus image
    parameters[i] = thetaPlus;
    m_KernelSource->SetParameters( parameters );
    m_KernelSource->UpdateLargestPossibleRegion();
    InternalKernelImagePointer plusImage = m_KernelSource->GetOutput();
    plusImage->DisconnectPipeline();

    // Generate the minus image
    parameters[i] = thetaMinus;
    m_KernelSource->SetParameters( parameters );
    m_KernelSource->UpdateLargestPossibleRegion();
    InternalKernelImagePointer minusImage = m_KernelSource->GetOutput();
    minusImage->DisconnectPipeline();

    // Subtract the two and divide by deltaTheta * 2 to get the
    // partial derivative image estimate, then multiply the result by
    // the Jacobian. We'll do this all in one loop to simplify things.
    typename InternalKernelImageType::RegionType region( plusImage->GetLargestPossibleRegion() );
    ImageRegionConstIterator< InternalKernelImageType > plusImageIter( plusImage, region );
    ImageRegionConstIterator< InternalKernelImageType > minusImageIter( minusImage, region );
    ImageRegionConstIterator< InternalImageType > jacobianImageIter( jacobianIFFT->GetOutput(), region );

    double sum = 0.0;
    while ( !plusImageIter.IsAtEnd() )
      {
      double dhdTheta = ( plusImageIter.Get() - minusImageIter.Get() ) / (2.0 * deltaTheta );
      sum += dhdTheta * jacobianImageIter.Get();

      ++plusImageIter;
      ++minusImageIter;
      ++jacobianImageIter;
      }
    gradient[i] = sum;

    parameters[i] = theta;
    }

  for (unsigned int i = 0; i < parameters.Size(); ++i)
    {
    parameters[i] = parameters[i] - m_Beta * gradient[i];
    }

  m_KernelSource->SetParameters( parameters );
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
void
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::Finish(ProgressAccumulator * progress, float progressWeight)
{
  // Take the inverse Fourier transform of the current estimate
  typedef HalfHermitianToRealInverseFFTImageFilter< InternalComplexImageType,
                                                    InternalImageType >
    InverseFFTFilterType;
  typename InverseFFTFilterType::Pointer ifft = InverseFFTFilterType::New();
  ifft->SetActualXDimensionIsOdd( this->GetXDimensionIsOdd() );
  ifft->SetInput( m_TransformedCurrentEstimate );
  ifft->UpdateLargestPossibleRegion();
  progress->RegisterInternalFilter( ifft, 0.0 * progressWeight );
  this->m_CurrentEstimate = ifft->GetOutput();
  this->m_CurrentEstimate->DisconnectPipeline();

  this->Superclass::Finish( progress, progressWeight );

  m_TransformedInput = ITK_NULLPTR;
  m_TransformedCurrentEstimate = ITK_NULLPTR;
  m_DifferenceFilter = ITK_NULLPTR;
  m_ImageUpdateFilter = ITK_NULLPTR;
}

template< typename TInputImage, typename TKernelImage, typename TOutputImage >
void
ParametricBlindLeastSquaresDeconvolutionImageFilter< TInputImage, TKernelImage, TOutputImage >
::PrintSelf(std::ostream & os, Indent indent) const
{
  this->Superclass::PrintSelf( os, indent );

  os << indent << "KernelSource: " << m_KernelSource << std::endl;
  os << indent << "Alpha: " << m_Alpha << std::endl;
  os << indent << "Beta: " << m_Beta << std::endl;
}
} // end namespace itk

#endif