File: itkParametricBlindLeastSquaresDeconvolutionImageFilterTest.cxx

package info (click to toggle)
insighttoolkit4 4.13.3withdata-dfsg2-4
  • links: PTS, VCS
  • area: main
  • in suites: bookworm
  • size: 491,256 kB
  • sloc: cpp: 557,600; ansic: 180,546; fortran: 34,788; python: 16,572; sh: 2,187; lisp: 2,070; tcl: 993; java: 362; perl: 200; makefile: 133; csh: 81; pascal: 69; xml: 19; ruby: 10
file content (254 lines) | stat: -rw-r--r-- 9,091 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
/*=========================================================================
 *
 *  Copyright Insight Software Consortium
 *
 *  Licensed under the Apache License, Version 2.0 (the "License");
 *  you may not use this file except in compliance with the License.
 *  You may obtain a copy of the License at
 *
 *         http://www.apache.org/licenses/LICENSE-2.0.txt
 *
 *  Unless required by applicable law or agreed to in writing, software
 *  distributed under the License is distributed on an "AS IS" BASIS,
 *  WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 *  See the License for the specific language governing permissions and
 *  limitations under the License.
 *
 *=========================================================================*/

#include "itkFFTConvolutionImageFilter.h"
#include "itkGaussianImageSource.h"
#include "itkImageFileReader.h"
#include "itkImageFileWriter.h"
#include "itkParametricBlindLeastSquaresDeconvolutionImageFilter.h"
#include "itkTestingMacros.h"

// Define a version of the GaussianImageSource that has only the sigma
// parameters
namespace itk
{
template< typename TOutputImage >
class ExampleImageSource : public GaussianImageSource< TOutputImage >
{
public:
  /** Standard typedefs. */
  typedef ExampleImageSource                   Self;
  typedef GaussianImageSource< TOutputImage >  Superclass;
  typedef SmartPointer< Self >                 Pointer;
  typedef SmartPointer< const Self >           ConstPointer;

  /** Output image typedefs */
  typedef TOutputImage                            OutputImageType;
  typedef typename OutputImageType::Pointer       OutputImagePointer;
  typedef typename OutputImageType::PixelType     OutputImagePixelType;
  typedef typename OutputImageType::PixelType     PixelType;
  typedef typename OutputImageType::RegionType    RegionType;
  typedef typename OutputImageType::SpacingType   SpacingType;
  typedef typename OutputImageType::PointType     PointType;
  typedef typename OutputImageType::DirectionType DirectionType;
  typedef typename OutputImageType::SizeType      SizeType;
  typedef typename OutputImageType::SizeValueType SizeValueType;

  typedef typename Superclass::ParametersValueType  ParametersValueType;
  typedef typename Superclass::ParametersType       ParametersType;
  typedef std::vector< bool >                       EnabledArrayType;

  /** Method for creation through the object factory. */
  itkNewMacro(Self);

   /** ImageDimension constant */
  itkStaticConstMacro(OutputImageDimension,
                      unsigned int,
                      TOutputImage::ImageDimension);

  /** Run-time type information (and related methods). */
  itkTypeMacro(ExampleImageSource, GaussianImageSource);

  /** Set the parameters for this source. Setting the parameters does
   * not mark the image source as modified; subclasses should override
   * this method to forward parameters through setters that call
   * Modified(). */
  virtual void SetParameters( const ParametersType & parameters ) ITK_OVERRIDE
  {
    ParametersType gaussianParameters = this->Superclass::GetParameters();
    for ( unsigned int i = 0; i < OutputImageDimension; ++i )
      {
      gaussianParameters[i] = parameters[i];
      }

    this->Superclass::SetParameters( gaussianParameters );
  }

  /** Get the parameters for this source. */
  virtual ParametersType GetParameters() const ITK_OVERRIDE
  {
    ParametersType gaussianParameters = this->Superclass::GetParameters();
    ParametersType parameters(OutputImageDimension);
    for ( unsigned int i = 0; i < OutputImageDimension; ++i )
      {
      parameters[i] = gaussianParameters[i];
      }

    return parameters;
  }

  /** Get the number of parameters. */
  virtual unsigned int GetNumberOfParameters() const ITK_OVERRIDE
  {
    return OutputImageDimension;
  }

protected:
  ExampleImageSource() {};
  virtual ~ExampleImageSource() ITK_OVERRIDE {};

private:
  ITK_DISALLOW_COPY_AND_ASSIGN(ExampleImageSource);
};
}


int itkParametricBlindLeastSquaresDeconvolutionImageFilterTest(int argc, char* argv[])
{
  if ( argc < 6 )
    {
    std::cerr << "Usage: " << argv[0]
              << " <input image> <output image> <iterations> <alpha> <beta> [convolution image]"
              << std::endl;
    return EXIT_FAILURE;
    }

  typedef float                              PixelType;
  const unsigned int                         Dimension = 2;
  typedef itk::Image< PixelType, Dimension > ImageType;
  typedef itk::ImageFileReader< ImageType >  ReaderType;
  typedef itk::ImageFileWriter< ImageType >  WriterType;

  ReaderType::Pointer inputReader = ReaderType::New();
  inputReader->SetFileName( argv[1] );
  inputReader->Update();

  // Create a masked parametric image source so that we can optimize
  // for the sigma parameters only.
  typedef itk::ExampleImageSource< ImageType > KernelSourceType;
  KernelSourceType::Pointer kernelSource = KernelSourceType::New();
  kernelSource->SetScale( 1.0 );

  KernelSourceType::SizeType size = {{32, 32}};
  kernelSource->SetSize( size );

  KernelSourceType::PointType origin;
  origin[0] = 0.0;
  origin[1] = 0.0;
  kernelSource->SetOrigin( origin );

  KernelSourceType::SpacingType spacing;
  spacing[0] = 1.0;
  spacing[1] = 1.0;
  kernelSource->SetSpacing( spacing );

  KernelSourceType::ArrayType sigma;
  sigma[0] = 2.0;
  sigma[1] = 4.0;
  kernelSource->SetSigma( sigma );

  KernelSourceType::ArrayType mean;
  mean[0] = 0.5 * (size[0] - 1) * spacing[0];
  mean[1] = 0.5 * (size[1] - 1) * spacing[1];
  kernelSource->SetMean( mean );

  // Generate a convolution of the input image with a kernel computed
  // from a parametric image source. We'll try to recover those
  // parameters later.
  typedef itk::FFTConvolutionImageFilter< ImageType > ConvolutionFilterType;
  ConvolutionFilterType::Pointer convolutionFilter = ConvolutionFilterType::New();
  convolutionFilter->SetInput( inputReader->GetOutput() );
  convolutionFilter->NormalizeOn();
  convolutionFilter->SetKernelImage( kernelSource->GetOutput() );

  // Use the same SizeGreatestPrimeFactor across FFT backends to get
  // consistent results.
  convolutionFilter->SetSizeGreatestPrimeFactor( 5 );

  // Create an instance of the deconvolution filter
  typedef itk::ParametricBlindLeastSquaresDeconvolutionImageFilter< ImageType, KernelSourceType >
    DeconvolutionFilterType;
  DeconvolutionFilterType::Pointer deconvolutionFilter = DeconvolutionFilterType::New();
  deconvolutionFilter->SetKernelSource( kernelSource );
  deconvolutionFilter->SetSizeGreatestPrimeFactor( 5 );

  // Change the sigma settings here to something different

  KernelSourceType::ParametersType parameters( kernelSource->GetParameters() );
  parameters[0] = 3.0;
  parameters[1] = 3.0;
  kernelSource->SetParameters( parameters );

  deconvolutionFilter->NormalizeOn();
  double alpha = atof( argv[4] );
  double beta  = atof( argv[5] );
  deconvolutionFilter->SetAlpha( alpha );
  deconvolutionFilter->SetBeta( beta );
  deconvolutionFilter->SetInput( convolutionFilter->GetOutput() );
  deconvolutionFilter->SetNumberOfIterations( atoi( argv[3] ) );
  deconvolutionFilter->UpdateLargestPossibleRegion();

  std::cout << "Kernel parameters: " << kernelSource->GetParameters()
            << std::endl;
  try
    {
    WriterType::Pointer writer = WriterType::New();
    writer->SetFileName( argv[2] );
    writer->SetInput( deconvolutionFilter->GetOutput() );
    writer->Update();
    }
  catch ( itk::ExceptionObject & e )
    {
    std::cerr << "Unexpected exception caught when writing deconvolution image: "
              << e << std::endl;
    return EXIT_FAILURE;
    }

  KernelSourceType::ParametersValueType expectedSigmaX = 2.90243;
  if ( std::abs( kernelSource->GetParameters()[0] - expectedSigmaX ) > 1e-5 )
    {
    std::cerr << "Kernel parameter[0] should have been " << expectedSigmaX
              << ", was " << kernelSource->GetParameters()[0] << "."
              << std::endl;
    return EXIT_FAILURE;
    }

  KernelSourceType::ParametersValueType expectedSigmaY = 2.90597;
  if ( std::abs( kernelSource->GetParameters()[1] - expectedSigmaY ) > 1e-5 )
    {
    std::cerr << "Kernel parameter[1] should have been " << expectedSigmaY
              << ", was " << kernelSource->GetParameters()[0] << "."
              << std::endl;
    return EXIT_FAILURE;
    }

  // Optionally write the convolution image on which we're testing the
  // deconvolution filter
  if ( argc >= 7 )
    {
    try
      {
      WriterType::Pointer writer = WriterType::New();
      writer->SetFileName( argv[6] );
      writer->SetInput( convolutionFilter->GetOutput() );
      writer->Update();
      }
    catch ( itk::ExceptionObject & e )
      {
      std::cerr << "Unexpected exception caught when writing convolution image: "
                << e << std::endl;
      return EXIT_FAILURE;
      }
    }

  // Exercise the setters/getters
  TEST_SET_GET_VALUE( alpha, deconvolutionFilter->GetAlpha() );
  TEST_SET_GET_VALUE( beta, deconvolutionFilter->GetBeta() );

  return EXIT_SUCCESS;
}